Multi-Objective Optimization of
Urban Water Resource Systems

By
Seyed Mohammad Mortazavi Naeini
B.Sc., Civil Engineering

M.Sc., Water Engineering

A Thesis submitted for the
Degree of Doctor of Philosophy at

The University of Newcastle

January 2013



Preface 1

Declaration

“This Thesis contains no material which has been accepted for the award of any other degree
or diploma in any university or other tertiary institution and, to the best of my knowledge
and belief, contains no material previously published or written by another person, except
where due reference has been made in the text. | give consent to this copy of my thesis,

when deposited in the University Library, being made available for loan and photocopying
subject to the provisions of the Copyright Act 1968. ”

(Signed)




Preface 1l

Acknowledgement

It would not have been possible to finish this thesis without the help and support
of the people around me, to only some of whom it is possible to give particular

mention here.

First and foremost, my utmost gratitude to my supervisor, Prof. George Kuczera,
whose sincerity and encouragement I will never forget. If it was not his patience and
support it would not be possible for me to explore my wild ideas in this thesis. I will
always remember the moments when I went to his office with worries and his

patience and support made me calm.

I would like to show my gratitude to my invaluable network of supportive,
forgiving, generous and caring friends without whom I could not have survived the
process. Among them, I would like to thank my office mates, Andrew, Chaminda,
Yousef, Mason, Nurul and Glen. Andrew, I really appreciate your effort to teach me
Aussie words! If it was not because of your sense of humour I would feel more
homesick here. Chaminda, I will always remember our inspiring discussions. Yousef,
I am grateful for your help and support when you generously allowed me to use your

computers to run my models.

I would like to thank the staff of our faculty for their help. Among them I would
like to thank Lijie and Tom. Likewise, I would like to thanks Cherie, Ann and Josh

for being accommodating to my queries and for all the help.

I would like to acknowledge eWater financial support for this research and their

support for travelling to present my papers in conferences.

I owe my deepest gratitude to my family and especially to my parents. They
always supported me during all years of my education. My mum always reminded me
that it will be possible to finish this thesis when I was in down moods. Thank you for

all of your help and support mum.




Preface 1il

Table of Contents

DECLARATION ...ttt cciieeeterreesiesseeeessssssseisseesssssssssssssseessssssssssssessssssssssssssesssssssssssssssssnnnnnes |
ACKNOWLEDGEMENT .......ccoceeecieeeteetierrneeeenreeeseeeseeeeeeeeeesseesseesseesessssesseeesesesssssesssssesessssssssssssssees 1
TABLE OF CONTENTS.....cceeeciiiitiitieeciinsseeeseeessisseeeessssssssssssessssssssssssssessssssssssssssssssssssssssssens ]
LIST OF FIGURES.........ooueeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseessesesssssssesssssssssssssssssssssssssssssssssssssssssssnes Vi
LIST OF TABLES ... ciirtetiiescisseeressseesssissseessssssssssssseeessassssssssssessssssssssssesssssssssssssssessns Xl
Y = 13 I 27 N Y XV
PUBLICATIONS . ... oottt cciiirettrieeiesssesesssessssisssesssssssssssssseeessssssssssssesessssssssssseessssssssssssssenes XVII
CHAPTER 1 INTRODUCGTION ......cciiiiiiiiiiiiiieiiseiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 1
1-1 DECISION SUPPORT IN URBAN WATER IMANAGEMENT......cevvtvruuiiereeerreersnneeeeeessesssnnieeesesssessssnmneeeessssssmnnnnns 2
1-2 THESIS OBJECTIVES 1eieeeieeeeeieieiesesesesesesesasassssssesssssssssnsssssnssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssenene 6
L-3 THESIS OUTLINE .evtttuuueeeeeeeeeretuuaeeeeeseerassenaeeessssssssnsaseessesssssnsesessssssssssneseessssssssnnnssesesssssssnnnsesessssssnnes 8
CHAPTER 2 SIMULATION AND OPTIMIZATION IN URBAN WATER RESOURCE
MANAGEMENT ......coeeeieieeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeeeerreereeareerasessasssssssssssssssssssssssssssssssssssssssssssssnssnnnns 9
21 INTRODUCTION .evtuuuueeeeereeurunieseeereresssnnaeeeesssssssnseseessessssssnseesssssssssnesessssssssssnaesessssssssnnnesesessssssnnnnnees 10
2-2 WATER RESOURCE SIMULATION IVIODELS.....ceetvererireereeeeerereeeeeeeereeeseseeeeesesesesesesesssesessseesesesssesesssesssssseses 10
2-3 THE WATHNETS IMIODEL vvvuuueeeieeieietiiieeeeeeeettinieeeeeeeessssniesesessssssnnaeeesssssssssnnesessssssssnnmeesessssssssnsnnsens 13
2-4 MULTI-OBJECTIVE OPTIMIZATION ..ctetetrrererrrerereeererereeereeeeeeeeeeeesseeseseeesesseesesesessssssesssssesesssssssssssssseseseses 16
2-5 METHODS FOR IDENTIFYING PARETO-OPTIMAL SOLUTIONS ...uueeeeeeiiritiieeeeeeerersnnneeeeeeeresssnneeeeesssesssnnnneeeeens 21
2-5-1 Classical Optimization MELROUS..............ccccuueeeeeiiieeceeee e et et e et e e s eta e e sieeaeseranaeenes 21
2-5-2 Multi-Objective Optimization Evolutionary AIGOritAMS ...............cceeeeecviveeeeeeecciiivieaeeeeens 22
2-5-3 AN OVEIVIEW Of EMOEA ...ttt ettt e e e te e e et a e st a e e s etae e e s astaaestaeaeesssesesnees 23
2-6 OPTIMIZATION AND SIMULATION FRAMEWORK 1vvuunieeeeeirtriieeeeerererennneeeeeeesessssnneesesssessssnneeeeessssssssnnneneees 27
2-7 PARALLEL COMPUTING vvvvvrerreerreerrerererereeereseseeeeeeeeseseseseseeesesesseessesesesesesesesesessssssssssesssssesesesesssesesssesens 29
2-8 SUMMIARY ....cetttttuuiereeererertniaeeeererestsnaeresessssssnnaseeesssssssnnasesesssssssnnaeesssssssssssnesesessssssnnnnseessssssssesssnns 32

CHAPTER 3 MULTI-OBJECTIVE OPTIMIZATION OF URBAN WATER RESOURCES:

MOVING TOWARDS MORE PRACTICAL SOLUTIONS........cccceiiirrericcerenicnnnesscsnnessessneenses 33
3-1 INTRODUCTION ..euiiuitteteeeaaiueteeeeeesaauasteeeeeesauuseeeeeeasaaasnsaeeeeeesanssbeeaeeeeaanssnbeeaeeesansnbeeeaeaesansnneaaaans 34
3-2 REVIEW OF URBAN WATER RESOURCES OPTIMIZATION LITERATURE ...ceuvveeererreeereenreesreesseeesseeesseeenseesnens 36
3-3 A MORE PRACTICAL MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY FOR URBAN WATER SUPPLY ................ 39
B2l CASE STUDY uuteetteerueesteeerteesteesuteesuseesateesseeesbteenseesabaesaseesabeesaseesabeesasee st eestesabaesnseesateesaseennseess snnes 41

3-4-1 Optimization IMPIeMENtALION ISSUES .............eeeeeeeeieeiieieseeeeccieeee e eeetcateaa e e e e sssteaaaaeeessnsees 41
3-4-2 Description of Sydney HeadWOrks SYStemM ...........ccuueeeecuveeeeeiieesiieeeeciieeecteeeseeeestea e 42
3-4-3 Streamflow and DemaNd DAL .............cceecueeeeeeeeieeieeeeeeeee et e eetteeeeseaeeeeteeeesieaaeesissaeenes 44
3-4-4 DECISION VAIIADIES .........coueeeieeiieeeet ettt ettt ettt st st e st s steesnee e 45
3-4-5 0bjectives ANA CONSEIAINTS ......c.ccceeueeeeeeeeeeeieeeeeeeeeett e e e e et e e e e e e s et b e e e e e sssssresaaaeesanes 47
3-5 CASE STUDY SCENARIOS. .. vtteuteruteeeteesteesiseesuseesssesssesasssesseessseessseesseessseessessseesnsessnseessseessseessesssseens 50
3-5-1 Joint Optimization of Operating and Infrastructure Decision Variables: Scenarios 1 and 2 51
3-5-2 Moving From Environmental Constraints to Trade-Offs: Scenarios 3t0 5.........cccceeeevvveenes 52
3-5-2-1 Sensitivity to Environmental Flow Constraints —Scenarios 3and 4.........cccecvveeviieeviieeeiieeesnnnen. 53

3-5-2-2 Three-Objective Case StUdY — SCENATIO 5....ccciieciierieeieerie e see e e et e e e e s e esseesseeeneenns 60




Preface v

3-5-3 The Drought Security Cost Trade-off: SCenarios 6 aNd 7............coceeeveeeveenceenseenieesieeaeen 61
30 DISCUSSION ..eeetttuueeeeeerertriuieeeeeeerastsuaeseeerssassnnnseeeessassssnnseeessssssnnnnseesessssssnnnnsesessssssnnnnseseesssssnnsnssnn 66
-7 CONCLUSIONS ..evttutneeeeereeeruuieeeeesesastssaeeeeessessssiaseesssressssaseessssssssanasesessssssssnssesesssssssnnesesesessssnnnnnsen 67

CHAPTER 4 APPLICATION OF MULTI-OBJECTIVE OPTIMIZATION TO SCHEDULING

CAPACITY EXPANSION OF URBAN WATER RESOURCE SYSTEMS.........cccccceverrecneenn. 70
4-1 INTRODUCTION ..veeiuveeeureesureassseessseesseeassssanseesssesassessssessssesssssesssssssssassessnsesanssssssessssessssessssessssssssssnsees 71
4-2 THE MULTI-OBJECTIVE SCHEDULING CAPACITY EXPANSION PROBLEM ...ceeeiiiiiiiriieieseeeieieeeeeesesiireeeeee e e 75

N oY 401V ] o [ 4 o ¢ OSSR 75
4-2-2 OPtIMIZAION MELROUS .....c...veeeeeieeeeee ettt e et e e e ttta e e ettt e e e ettt e e e ttsa e e s taeaeessseseeanses 77
4-3 CASE STUDY: DESCRIPTION AND PROBLEM FORMULATION.....eetteerruurrrieeressrairrreeeessssnraneeesssssasseneeesssssnnnes 79
4-3-1 Description Of CANDEIra SYStEM...........uueeeueeeeeeieieeeieeeeeteeeetteeeee e e e sceeeesstaaeesiaeaesstssaeenns 79
4-3-2 DECISION VAIIQBDIES .........eeeeeieeeeee e eete et e e et e e e ette e s et e e s s taa e s sstaessssanesssaeesansees 82
4-3-3 CONSEIAUNTS ..ttt ettt e e ettt e e e e ettt e e e e ettt e e e e seaassneeeaeenannnnes 83
4-3-4 OBJECEIVE FUNCLIONS ....c..eeeeeeeeeeteeeeeee ettt ettt ettt s e s teenateesaneenaee s 84
4-4 CASE STUDY SCENARIOS AND RESULTS ..ceeetieuiuiettteeeaeintieeteessesainrerereeesesnnreeeeessesnnreeeeesssannnnneneeessasnnnnnee 87
4-4-1 DESCIiPLiON Of SCENQAIIOS. ......ccoueeeieieeeeieeeteeeee ettt ettt ettt et sabeesaeenane s 87
4-4-2 Scenarios 1 and 2: Impact of Demand GroWth ..............cceeeeeeueieecieeeeiieeeeeieeeeciveeesiieneeaans 90
4-4-3 Scenarios 3 to 6: Impact of Different Timing of Infrastructure and Operational Decisions .93
4-4-4 Scenarios 7 to 9: Sensitivity to DiSCOUNt RATE .....ccuvveveveviiiiiiiiiiiiiiiiiiiiieeeeeeeee e 96
4-4-5 Scenarios 10 and 11: Revealing EQuity Trad@OffS .........cccuueeeeueeeeiieeeeeieeeeieeeecieee e, 98
4-4-6 Scenario 12: Sensitivity to INitial CONAItIONS ..........cccueeeeceeeeeciireeecieeesceeeesceeeeecaeaesceeen 106
Z-5 SUMMARY ...ttt e e ettt e e e e e et e et e e e e e s aa et e e e e e e e s s e e et eee e e s unb e e eeeeeaaaanb b et e eee s e e anbbeeeeeeeeaannbeeeeeeeaan aeeean 112

CHAPTER 5 EFFICIENT MULTI-OBJECTIVE OPTIMIZATION METHODS FOR

COMPUTATIONALLY-INTENSIVE URBAN WATER RESOURCES MODELS.................. 114
5-1 INTRODUCTION .veeuuveesuveesureesuseanseeesseeaseeasaeaseesssesasssessssesssssssssensssssesansessnsessnsessssessnseessesssssssseesses 115
5-2 REVIEW OF EXISTING MOO IMETHODS ......uttttieeeeeieiierteeeeeseiiseeeeeseseiiseeeeeessesnnreeeeesssesnnnneneeesessnnnnnee 117

o R Y |V 1Y @ U 119
R G | BRSPS 121
5-3 EVALUATION OF MULTI-OBJECTIVE PERFORMANCE ... .uuvvvteeeeeseiinieeeeessessisrreeeesssesanseseeesssssansseseessssnsnnnes 124
5-3-1 Convergence (Generational DiStaNCe) MELTIC.............ceeecueeeeccrireeeiieeeeiieeeeceeeeeiveaessiveen 124
5-3-2 Hypervolume RALIO (HVR) ......cocueeieeieeeeeeieeeeeeestee ettt ettt sa s e s 125
5-3-3 Additive Epsilon INAICALON (lgs)...ccuveeeeeeieeeeeeeeeeeeeeee ettt et e e et e e e saaaaesana e 126
5-4 OVERVIEW OF CASE STUDIES TO EVALUATE MOO METHODS .....uveviiiieeeeeriiiiteeeeeesiianeeeeessssaveneeeesssnnnns 127
5-4-1 Canberra HEQAWOIKS SYSTOM ........veeeeeeeeeeeeeee ettt e sttt eete e st a e st aesanaaaessnaeaeeas 128
5-4-2 Sydney HEAAWOIKS SYSTOM.............ueeeeeieeeeeeeeee ettt e e e tttteaa e e e e ettt ea e e e e e s ssasaaaaaeessans 130
5-4-3 BENCAMAIK PrOBIEIMS ...ttt ettt et 132
5-5 ANT COLONY OPTIMIZATION ..uuuuiitttteeeeeaautntteeeaeaaaiereeeeesesaaussteeeaessaasssaeaeesssaansnseeeeessaaanseeesesssasnnsees 133
5-5-1 Overview of Ant Colony OPtiMIZAtiON ...........cceccveeeeecieeesiiieeesieeee e e esteeeesteaeesiaaaaesseeeens 133
5-5-2 Review of Existing Multi-objective ACO Methods.............ccccccevueeeeceeveeeiieeeecieeeeiiieeeeieennn. 138
5-5-3 Towards An Improved MOACO AIGOFItAM ..........ooeeeeeeeeeeeeee et e e a e 143
5-5-4 Towards a More Efficient MOACO AIGOFithim ..............coccueeeeeeeeeecciee e e 146
5-6 EVALUATION OF MOO ALGORITHM PERFORMANCE .....cuvterutierureenireenieeesseeesseessseesnsaesseesnseesseessesssseesns 151
561 TUNING oottt ettt e et e e e e et e e e e e e s e e e e e s e e s e s e s e s e e e s e 151
5-6-2 RESUILS QNG DISCUSSION .......vveeeeieieeeieesieeeieesit ettt ettt ste e st ste st e saneesiaeesaeeeaes 159
5-6-2-1 Case Study — Canberra Water Supply System: TWO 0bJectives ........cccccvveeeiiieenieeecciieeeciee e, 159
5-6-2-2 Case Study — Canberra Water Supply System: Three Objectives .........ccccervervieriieeneenicenieenne. 170

5-6-2-3 Case Study — Sydney Water Supply System: Two and Three Objectives.........ccccceeeevreeecivreennnen. 172




Preface A

D=7 CONCLUSIONS ...ctttttteeeietetutiieeeeeserersssseaeeesssesssasaeeeeessssssanaaseessssssasanasessssssssssnnesesesssssssnnnseeesessssnnns 177
APPENDIX A FUSING THE BEST FEATURES OF EXISTING MOACO METHODS.......... 180
AT INTRODUCTION «.vtuueetnueerttneeerruneeertnneeresunsesssneesssnneeseneeesssneeesssneesssnnsessssneesssnneesssnnsesssnseesssnnesssnnens 181
=2 RESULTS 1eetetttutiieieeeseeetanieeeeeessessstaeeseessessssnnaseeesssssssnnaseeessssssnnsaseessssssssnnnsseeessssssnnnnseeesssssssessnsnn 183
CHAPTER 6 CONCLUSIONS AND FUTURE WORK .......ccciiiiiiiriiirriiirirrssssssssssssssssssssssssnnes 202
-1 INTRODUCTION .evvuuuueeeeererurenaeseeeressssnnaesesssessssnnsasesessssssnnnseseesssssssnnsesesessssssnnnaeseesssssssnnsesessssssssnnnnns 203
6-2 SUMMARY AND CONCLUSIONS ...eeeeetriutineeeeeeeeersnnneeeeeeeseesstnnaeesesssessssnnaeeeessssssssnnsesessssssssssneeessesssssnnns 203

RESOUICE SYSTOIMS ..ottt ettt ettt ettt ettt st st s tatntssssnsnsnsnnnnnnnnnnnns 203
6-2-2 Efficient and Equitable Scheduling of Options to Cater For Future Changes ..................... 205
6-2-3 Computationally Efficient Multi-objective Optimization Methods ................ccccueeeeuveenn... 206
6-3 FUTURE RESEARCH DIRECTIONS ....uvteiuteesuteesiteesueeesuteesseesteeesseesseessseessseesasesssseesssesssseesssessseessseesnseesne 207

REFERENGCGES ...t e 210




Preface Vi

List of Figures

Figure 1-1 Sydney’s water supply system (Source :

http://www.sca.nsw.gov.au/publications/publications/water-supply-diagram, last

VISIE 05/05/2012) oot ettt e 3
Figure 1-2 Sydney’s total reservoir storage level (New South Wales Dept. of

Environment and Water, 2010) .........ooooiiiiiiiieiiieeciee et 4
Figure 2-1 A simple network in WATHNETS [adapted from Kuczera (1992)]............... 15
Figure 2-2 Full network including hidden arcs and nodes for network shown in

Figure 2-1[modified from (Kuczera, 1992)] ....c.coovoiieeiiiieieeeeeeeeee e 15
Figure 2-3 Carryover arcs MPUt DOX .......covererriirienieienieneeiesetee ettt 16
Figure 2-4 Illustration of decision and objective space of a multi-objective problem...... 17
Figure 2-5 Concept of Pareto optimality.........cccccuveriieiiieniieiiieniieieeeie e 19
Figure 2-6 Schematic of ideal multi-objective optimization method (Deb, 2001) ........... 20

Figure 2-7 Schematic of preference-based multi-objective optimization method (Deb,

2001) ettt sttt ae e 20
Figure 2-8 Schematic of e-dominance CONCEPt.........cocueveerieriiriiiiiniienieieneeeeeereeene 24
Figure 2-9 Illustration of e-dominance concept for minimizing f; and f5.........ccccceeeeee 24

Figure 2-10 Illustration of Pareto frontier in conjunction with the e-dominance

concept (Kollat and Reed, 2000).........c.coovieiieriiiiiieiiieieeeee et 25
Figure 2-11 Schematic of eMOEA (Adapted from Deb et al., 2003a) .........cceeevevvvernennnne 26
Figure 2-12 Schematic of communication between simulation and optimization

INOAEIS ..ttt ettt sttt sae et st 29
Figure 2-13 Pseudo code for master-worker protocol in PVM (Adapted from (Cui,

2003)) cttete ettt ettt ettt et e et e te st e bt et e ere e st enteeneeteeneeeaeeneenaans 31
Figure 3-1 WATHNETS schematic of Sydney water supply headworks system - the

nodes labeled “R” represent reservoirs, “S” stream nodes, “D” demand zones,

and “W” waste/SINK NOAES........cocuiriiriiiieieieeee e 43
Figure 3-3 Approximate Pareto-optimal front for Scenario 3 (with environmental flow

constraints) and Scenario 4 (without environmental flow constraints). The filled-

in points represent solutions that include a desalination plant............c.ccoceeverienneee 54




Preface Vil

Figure 3-4 Comparison of approximate Pareto-optimal decisions for Scenario 3 (with
environmental flow constraints) and Scenario 4 (without environmental flow
constraints): (a) desalination plant capacity (ML/day) versus desalination plant
trigger level; (b) Warragamba base and incremental gain; (¢) Welcome Reef
Capacity as a function of restriction frequency; and (d) restriction frequency
Versus level-one reStriction triZ@ET ......cc.eecuieeiierierieeriieeieeriee et eieeeveebeesaeeseaesnneens 57

Figure 3-5 Plot of Warragamba and Avon pump marks and level-one restriction
trigger against restriction frequency for Scenario 3 (with environmental flow
constraints) and Scenario 4 (without environmental flow constraints)..................... 59

Figure 3-6 Approximate Pareto-optimal solutions for Scenario 5 are plotted against
restriction frequency and present worth cost. The color code describes the
ENVITONMENTAL SEIESS ...uviiuiiiiiiiiiie ettt ettt et e st ebeeeeee 61

Figure 3-7 Pareto solution from Scenario 6: (a) Time series of total storage during the
most severe drought in the first 500 years; and (b) Time series of unplanned
shortfalls, expressed as a percentage of demand, for 10,000 years...........c..ccoeeunee.e. 63

Figure 3-8 Comparison of approximate Pareto frontier for Scenario 6 (500-year
record) and Scenario 7 (10,000-year record)..........ceecueerieriienieniieieenie e 65

Figure 4-1 Schematic of scheduling capacity expansion over a planning horizon............ 73

Figure 4-2 Schematic of Canberra headworks system (Adapted from
http://www.actew.com.au/Water%20and%20Sewerage%20Systems/Water%20S
upply%20System/ACT%20Water%20Supply%20Map.aspx, last visit

LO/0S5/20T2) ettt sttt et 80
Figure 4-3 WATHNETS schematic of Canberra headworks system...........c.cccoevveennenee. 81
Figure 4-4 Comparison of Canberra unrestricted demand time series with and without

BEOWEN. .ottt ettt et sttt e ettt e et e et e sate e b e nee 82
Figure 4-6 Demand, unplanned shortfalls and restricted demand for the first replicate

OF SCEONATIO 2.ttt ettt et ebeenbeenaesaeens 91
Figure 4-7 Time series of total storage for the first replicate of Scenario 2 ..................... 92
Figure 4-9 Pareto frontier for Scenario 11 ........coocoviiiiiiiiiiniiiiicececeeceee 102

Figure 4-10 Pareto trade-off between present worth of capital, operational and
unplanned shortfall costs and average of undiscounted restriction costs over

three planning stages for Scenario 11 .......cccoeviiieiiiieiiieeeeeeeee e 102




Preface viii

Figure 4-11 Pareto trade-off between present worth capital, operational and

unplanned shortfall cost and standard deviation of undiscounted restriction costs

over three planning stages for Scenario 11 ........ccceeiiiieniiieicie e 103
Figure 4-12 Pareto trade-off between the average and standard deviation of

undiscounted restriction costs over three planning stages for Scenario 11............. 103
Figure 5-1 Pseudo code for the SMPSO algorithm (Adapted from Nebro et al. (2009))121
Figure 5-2 Illustration of crowding-distance algorithm. The points marked as filled

circles are solutions of the same non-dominated front (Deb et al., 2002a)............. 122
Figure 5-3 NSGA-II procedure (Deb et al., 2002a) ......cc.coceeveriininniniinienenienecieeene. 123
Figure 5-4 Schematic showing three non-dominated fronts to illustrate shortcoming

OF CONVEIZENCE MELTIC ..vveeivieeiiieeiiieeiiee ettt e et e e st e e st e e saeeeiaeeeareeeareesnsaeennneeennnes 125
Figure 5-5 Hypervolume defined by the non-dominated solutions A, B and C

(Durillo et al., 2010) ..c.viiieiieeeiee et e e e e e e e rae e be e e eans 126
Figure 5-6 Illustration of I as a measure of consistency (Hadka and Reed, 2011)....... 127

Figure 5-7 Schematic for nodal method showing ant routes between five discrete

variables (Abbaspour et al., 2001) ......ccooiiieriiieiieeieeee e 134
Figure 5-8 Schematic for link method showing ant routes ..........c..cccceecveniencricnicnennne. 135
Figure 5-9 Depiction of possible routes for nodal and link methods..........c.cccceveeneene. 135
Figure 5-10 Pseudo code for MOACO-State algorithm............ccceevvveviiinieniienienieenen. 145

Figure 5-11 Amount of pheromone on segments for the first decision after 2000,
4000, 6000, 80000 and 10000 evaluations (for Canberra case study with two
ODJECLIVES) c.vieirieiieeiiietie et et e et e e et eteesiteesbteesbeeseeenseenseeesbeensaesnseenseessseeseennseens 147
Figure 5-12 Pseudo code for EMOACO algorithm .........ccccoeeieeiieiiienciieieeiicieceeee, 151
Figure 5-14 Results of MOACO-State tuning as a function of number of evaluations
for Canberra case study minimizing two objectives: present worth cost and
restriction frequency (a) Convergence measure (b) HVR measure ........................ 155
Figure 5-15 Results of eMOEA tuning as a function of number of evaluations for
Canberra case study minimizing two objectives: present worth cost and
restriction frequency (a) Convergence measure (b) HVR measure ........................ 156
Figure 5-16 Results of NSGA-II tuning as a function of number of evaluations for
Canberra case study minimizing two objectives: present worth cost and

restriction frequency (a) Convergence measure (b) HVR measure ........................ 157




Preface X

Figure 5-17 Results of SMPSO tuning as a function of number of evaluations for

Canberra case study minimizing two objectives: present worth cost and

restriction frequency (a) Convergence measure (b) HVR measure ........................ 158
Figure 5-18 Convergence measure for six MOO methods as a function of the number

of evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction frEQUENCY ........eeeriiieriieeiiieeiee et 160
Figure 5-19 HVR measure for six MOO methods as a function of the number of

evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction freqUENCY ..........ooceerieeiiieiieeiiee e 160
Figure 5-20 I+ measure for six MOO methods as a function of the number of

evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction fTEQUENCY .....c.eeeeviieriieeiiie e 161
Figure 5-21 Three performance measures for the first run of the six MOO methods

after 1000 evaluations for the Canberra case study minimizing two objectives:

present worth cost and restriction freqUENCY.........cevveeeriieerieeeriie e 163
Figure 5-22 Non-dominated solutions of the best and worst methods in terms of

convergence measure obtained at the first run of six MOO methods after 1000

evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction frEQUENCY ........eeevvieeriieeiiieeiee et 163
Figure 5-23 Non-dominated solutions of the best and worst methods in terms of HVR

measure obtained at the first run of six MOO methods after 1000 evaluations for

the Canberra case study minimizing two objectives: present worth cost and

TESIIICHION fTEQUENICY ..eiiuvtieiiiie ettt ettt ettt e et ee e eeetaeeenaaeesnneeees 164
Figure 5-24 Non-dominated solutions of two methods with similar convergence

measure value obtained at the first run of six MOO methods after 1000

evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction frEQUENCY ........eeevviieriieeriieeiee e 164
Figure 5-25 Pattern of EMOACO search space exploration for the first run ................. 165
Figure 5-26 Comparison of the “true” Pareto-optimal front (TPF) against the best

Pareto sets (out of 10 runs) produced by the six MOO methods for the Canberra

case study for (a) 1000 and (b) 2000 evaluations..........c.cceereveereercieereeereenreeneens 167




Preface X

Figure 5-29 Measure for six MOO methods as a function of the number of

evaluations for the Canberra case study minimizing three objectives: present

worth cost, restriction frequency and time storage less than 20% ..............cc..c...... 171
Figure 5-30 I+ measure for six MOO methods as a function of the number of

evaluations for the Canberra case study minimizing three objectives: present

worth cost, restriction frequency and time storage less than 20% ...............c.......... 171
Figure 5-31 Convergence measure for six MOO methods as a function of the number

of evaluations for the Sydney case study minimizing two objectives: present

worth cost and restriction freqUENCY ..........ooceeriieiiierieiiiee e 173
Figure 5-32 HVR measure for six MOO methods as a function of the number of

evaluations for the Sydney case study minimizing two objectives: present worth

cost and restriction fTEQUENCY ....cccviiiiiieeiieecie et e 173
Figure 5-33 I+ measure for six MOO methods as a function of the number of

evaluations for the Sydney case study minimizing two objectives: present worth

cost and restriction fTEQUENCY ....cccviviiiiieiiiiieiiie ettt 174
Figure 5-34 Convergence measure for six MOO methods as a function of the number

of evaluations for the Sydney case study minimizing three objectives: present

worth cost, restriction frequency and environmental Stress .........cccceveveveerieriennenne 174
Figure 5-35 HVR measure for six MOO methods as a function of the number of

evaluations for the Sydney case study minimizing three objectives: present worth

cost, restriction frequency and environmental Stress ..........ccccceeveeriiieieenieeneenneane 175
Figure 5-36 I+ measure for six MOO methods as a function of the number of

evaluations for the Sydney case study minimizing three objectives: present worth

cost, restriction frequency and environmental Stress ..........ccccceeerveeeiieeeiieencneeenne. 176
Figure A-2 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDT3 ........ccoooiiiiiiiiiieiieieeeeeeeee 185
Figure A-3 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDT4 .........cccoooiieeiiieciieeeeee e 186
Figure A-4 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDTO ........ccccccvveiieiiiiiiieniieieeieeeeee 186
Figure A-5 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ1 .........c.cocvieiiiiiiiieeeeeee 187




Preface Xi

Figure A-6 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ2.........ccccoooviviiiiiiiiiieieeieeieeiene 187
Figure A-7 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ3.........ccccooiiiiiiiiiiieeee 188
Figure A-8 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ6...........cccceevivieiieiiiieiieieeeeene 188
Figure A-9 HVR measure for twelve variants as a function of the number of

evaluations for the Canberra case study minimizing two objectives: present

worth cost and restriction freqUENCY ..........oocueeriieiiieiieiiieeeee e 189
Figure A-10 HVR measure for twelve variants as a function of the number of

evaluations for the Canberra case study minimizing three objectives: present

worth cost, restriction frequency and the fraction of time that storage is less than

Figure A-11 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem ZDTT ............. 191
Figure A-12 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem ZDT3 ............. 191
Figure A-13 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem ZDT4 ............. 192
Figure A-14 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem ZDT6 ............. 192
Figure A-15 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ1............ 193
Figure A-16 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ2........... 193
Figure A-17 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ3........... 194
Figure A-18 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ6........... 194
Figure A-19 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the Canberra case study minimizing

two objectives: present worth cost and restriction frequency ...........ceceeeeveerneens 195




Preface Xii

Figure A-20 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a

function of the number of evaluations for the Canberra case study minimizing

three objectives: present worth cost, restriction frequency and and the fraction of

time that storage is 1ess than 20%0 ........coceeveiiiiiiiiiiiiiccceee e 195
Figure A-21 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem ZDTI ...... 197
Figure A-22 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem ZDT3 ...... 197
Figure A-23 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem ZDT4...... 198
Figure A-24 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem ZDT6 ...... 198
Figure A-25 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem DTLZI.... 199
Figure A-26 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem DTLZ2....199
Figure A-27 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem DTLZ3....200
Figure A-28 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the benchmark problem DTLZ6....200
Figure A-29 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the Canberra case study

minimizing two objectives: present worth cost and restriction frequency.............. 201
Figure A-30 HVR measure for three variants (M1, M4 and M7) and MOACO-State

as a function of the number of evaluations for the Canberra case study

minimizing three objectives: present worth cost, restriction frequency and the

fraction of time that storage is less than 20%.........ccccuevvveeviieriiieiieeiieeeeieeee s 201




Preface xiii

List of Tables

Table 3-1 Average monthly per capita indoor water consSUMPION.........ceeveeerrveereeenennne. 45
Table 3-2 List of decisSion variables X ........cocevierieiienienenienienieeiesieesie e 46
Table 3-3 Cost summary for infrastructure decision variables ............ccccceevveecivenieenenne. 48
Table 3-4 Summary of case StUAY SCENATIOS .....cccuveeererieeiiieeiieeeiieeeieeeereeesreeesreeeseree e 50
Table 3-5 Summary of labelled solutions on Pareto fronts in Figure 3-8.........ccccccocuee. 65
Table 4-1 Demand fractions for each restriction level.........c..ccoceeviiiiniinininiiniiienee 82
Table 4-2 List of deciSion Variables ...........coceviirieiinierieeeseseee e 83

Table 4-3 Infrastructure cost of capacity expansion decisions for Canberra water

headWOrks SYSEIM ......oouiiiiiiiiie e e 86
Table 4-4 LiSt Of SCENATIOS ...c..eervieiiriiiiieieiierieete ettt sttt st e &9
Table 4-5 Comparison of present worth cost and decisions for Scenarios 1 and 2........... 92
Table 4-6 Results for Scenarios 3 £0 6 .......cocveviiiiiiiniiiiiiiericeeee e 94
Table 4-7 Optimum decisions for Scenarios 3 t0 6.......cccevvereerieriinienerienieeeeereeeee 94
Table 4-8 Comparison of three scenarios with different discount rates............ccccecuenneee. 97
Table 4-9 Optimum decisions for Scenarios 7 t0 9.........ccceevevierieriiienieeiecie e 97

Table 4-10 Comparison of five solutions marked on Figure 4-8 of Pareto frontier for
SCENATIO 10 ..ttt ettt ettt et e 101
Table 4-11 Comparison of five marked solutions on the Pareto frontiers for Scenarios
LO ANA 1T oo sttt et ettt et sttt e sae e 101
Table 4-12 Decisions associated with the five solutions presented in Table 4-11 for
SCENATIO 11 ittt ettt ettt e st ebeeeeee 105
Table 4-13 Comparison of five points marked on Figure 4-13 of Pareto frontier for
SCENATIO 11ttt sttt 109
Table 4-14 Comparison of five points marked on Figure 4-13 of Pareto frontier for
SCENATIO 121ttt ettt ettt e st e b eeee 109

Table 4-15 Optimum decisions for five solutions presented in Table 4-13 for Scenario




Preface Xiv

Table 5-2 Capital decision variables for the Canberra water headworks system............ 130
Table 5-3 List of decision variables used in Sydney case study ..........ccccceevvveeviieniennnnnn. 131
Table 5-4 Cost summary for infrastructure decision variables in Sydney case study..... 132
Table 5-5 Summary of benchmark problem characteristics...........cccccevuevveininiiniincnnen. 133
Table 5-6 Summary of parameters used in the six MOO methods ...........ccceeeerieniennene 153
Table 5-7 Best (out of 10 runs) present worth cost ($ million) for a restriction

frequency of 0.1 for the six MethodS.........cccveviiiiiiiiieiieeeeeeee e 168
Table 5-8 Convergence, HVR and I standard deviations for 1000, 2000 and 3000

evaluations (the best is shown as bold italics and the worst is underlined) ............ 169

Table A-1 Summary of MOACO Variants ..........ccceceerueenienieeniieeieeniee e eieesveenseesaneens 182




Preface XV

Abstract

The provision of a water supply that is secure in the face of severe drought is a
primary objective for urban water agencies — “running out of water” is not a viable
option for a large city. However, there are other objectives that conflict with the
primary one — these include minimizing costs and environmental impacts. A major
challenge facing decision makers in the urban water sector is dealing with the trade-
offs between these conflicting objectives. Multi-objective optimization methods have
the potential to identify the optimal trade-offs between the competing objectives. The
principal aim of this thesis is to address the shortcomings in existing multi-objective
optimization applications to produce methods of greater practical relevance to urban

water resource management.

Review of past studies identified three practically significant shortcomings.
Focusing exclusively on either long-term (or infrastructure) options or on short-term
options such as operation rules may lead to sub-optimal solutions. The use of short
climate forcing data time series in simulation models to evaluate drought security can
produce solutions that make the system highly vulnerable to severe drought. Finally,
the setting of a priori environmental constraints may hide trade-offs between
environmental, economic and security factors that are of considerable interest to
decision makers. These shortcomings are addressed by a new multi-objective
methodology that exploits the ability of evolutionary algorithms to handle complex
objective functions and simulation models. The principal novelty is the explicit
treatment of drought security. A case study based on the headworks system for
Australia’s largest city, Sydney, demonstrates the practical significance of these
shortcomings and, importantly, the ability of the new approach to deal with these

shortcomings in a practicable manner.

In the face of urban population growth and the accompanying growth in water
demand, the performance of the urban water resource system is expected to
deteriorate over time. This will result in the need to intervene and adapt the system to
the changing conditions. The scheduling capacity expansion problem seeks to identify

the optimal schedule for the changes to the system. In past studies, this problem has
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been largely tackled by minimizing the total present worth of capital, operational and
rationing costs. A significant drawback of minimizing the total present worth cost is
that it is likely to produce solutions that lead to more severe and frequent rationing in
the future. Such a solution is likely to be socially unacceptable. A multi-objective
formulation for the scheduling capacity expansion problem is developed to overcome
this shortcoming while addressing the need to explicitly deal with drought security
and jointly optimize operating and infrastructure decisions. The formulation enables
the trade-off between cost and equity (the equal sharing of the burden of restrictions
over the planning horizon) to be explored. A case study based on the headworks
system for Australia’s capital city, Canberra, demonstrates the advantages of the new

approach.

The optimization of urban water resource systems requires running simulation
models tens of thousands of times. Given that simulation run times can range from
less than a minute to thirty or more minutes, it is important to use a multi-objective
optimization method which converges with the least number of evaluations (or
simulations). To address this need, a detailed assessment is conducted of three
benchmark multi-objective optimization methods and three newly developed methods
based on ant colony optimization using case studies based on the Canberra and
Sydney systems. No one method emerges as superior, although two of the six

methods are identified as inferior.
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1-1 Decision Support in Urban Water Management

The critical role of water in human society is incontestable. The development of
many ancient civilizations close to water sources shows that humans have understood
the importance of accessing water from early stages. The world’s population has
nearly tripled during the last century while exploitable water resources have remained
largely unchanged. Increasing population has resulted in greater demand for water to
support agriculture and urban water supply. Likewise the unprecedented growth in
industry has further increased water demand in many developed and developing
countries (UN-Water and FAO, 2007). This thesis considers the question of how to

best manage urban water resources in the face of growing demand.

In an Australian industry position paper describing a framework for urban water
resource planning, Erlanger and Neal (2005) state in the opening that: “A safe and
reliable water supply system is of utmost importance to the community. It is expected
and understood that water utilities manage their water resources so that communities
never run out of water.” Erlanger and Neal recognize that failure to supply minimum
water needs for an extended period would most likely result in disastrous social and
economic losses that could conceivably threaten the very existence of the urban

community.

As an example of the challenges facing large urban centres, the water resource
system supplying Sydney, Australian’s largest city, is considered. The system,
schematized in Figure 1-1, is complex with 11 major reservoirs serving Sydney’s
residential, commercial and industrial water demand. Its total capacity is more than
2,600 GL (gigalitres). The agencies responsible for Sydney’s water supply have to
deal with a number of future challenges including catering for a growing population,
coping with high natural variability, future climate change and mitigating

environmental impacts.
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Greater Sydney’s Water Supply System
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Figure 1-1 Sydney’s water supply system
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Historical records indicate that Sydney’s climate is highly variable and subject to
prolonged drought, even without consideration of future climate change impacts. This
is illustrated by Figure 1-2, which shows that Sydney’s total storage dropped from
90% in 2001 to nearly 35% in 2007 during the severe drought that affected much of

eastern Australia.
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Figure 1-2 Sydney’s total reservoir storage level (New South Wales Dept. of
Environment and Water, 2010)

Sydney’s population is expected to reach 5.7 million by 2035 which represents a
35% increase from 4.22 million in 2006. This population growth is likely to increase
annual demand by 66 GL (New South Wales Dept. of Environment and Water, 2010).

At the same time, the need to protect rivers and aquifers from environmental

degradation has become a significant priority.

The agencies responsible for Sydney’s water supply have available a range of
options to tackle these challenges. The options involve either increasing supply by
harvesting new sources of water or reducing demand by improving water use
efficiency, pricing and rationing. As an example of the former, in 2007 when
Sydney’s total storage level was around 35%, the state government approved the
construction of Sydney’s first desalination plant as an emergency measure to reduce
the risk of “running out” of water. With regard to demand reduction, annual demand
has been reduced by over 100 GL since 1999 with the introduction of water efficiency

programs. Moreover, several projects have been identified to increase recycled water
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from 33 GL/year in 2010 to 70 GL/year in 2015 (New South Wales Dept. of
Environment and Water, 2010). Water sharing plans have been revised to ensure
rivers and aquifers receive adequate environmental water and are not overused. In
some cases, such as the upper Nepean River, major upgrades to a number of dams
and weirs were implemented to improve natural fish passage in the Hawkesbury-

Nepean River system (New South Wales Dept. of Environment and Water, 2010).

While the provision of a safe and secure water supply is a primary objective for
urban water agencies, there are other objectives that conflict with the primary one —
these include, inter alia, minimizing costs and minimizing environmental impacts. A
major challenge facing decision makers in the urban water sector is dealing with the
trade-offs between these conflicting objectives. Each solution involving a specific
mix of options that increase supply and/or reduce demand will produce different
outcomes with respect to supply security, cost and environmental impact. For
example, construction of the 500 ML/day desalination plant would increase supply
security at a cost of $1.9 billion. Alternatively, supply security could also be
increased by imposing more frequent and severe restrictions at probably a lower
economic cost but higher social cost than construction of the desalination plant. Yet
again, supply security could be increased by relaxing environmental constraints in the
Wollondilly River to allow greater transfers from the Shoalhaven River to
Warragamba — this gain in security would be offset by a greater threat to the survival

of water-dependent fauna in the Wollondilly River.

The challenges facing Sydney’s water agencies are typical of those facing urban
water agencies both in Australia and internationally. In broad terms, these agencies
have to find solutions that maximize security of supply while minimizing cost and
minimizing environmental impacts. The number of solutions involving different
combinations of infrastructure investments and different operating rules can be
astronomic. The challenge of finding the best set of solutions is considerable. The
conventional approach of employing a trial-and-error search over a limited number of
solutions runs the significant risk of missing good solutions and the consequent

opportunity cost to the community.

Decision support systems are designed to assist decision makers to find good

solutions. Of particular interest in this thesis is the use of multi-objective optimization
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methods to sift through all feasible solutions to identify those solutions that optimally
trade-off two or more conflicting objectives. These methods have seen application to
urban water resources planning and management over the last two decades. However,

as will be shown, there remain significant shortcomings that limit their true potential.

1-2 Thesis Objectives

The primary goal of this thesis is to develop and demonstrate multi-objective
optimization (MOQ) approaches, which address the shortcomings of existing
methods in order to move closer to providing practical and realistic optimization of
urban water resources. To this end, several specific objectives are pursued in this

thesis:

1. To address the shortcomings of existing multi-objective optimization in urban

water resources planning and operation

The practical value of MOO methods in urban water resources management
depends on how well the optimization model represents the needs of the decision
makers. Previous work in this area has fallen short in a number of practically

important areas:

a) The performance of an urban water resource system is jointly dependent on the
mix of infrastructure and operating rule options. Focussing exclusively on either

infrastructure options or operating rules may lead to sub-optimal solutions.

b) Constraining objectives a priori may hide trade-offs of considerable interest to
decision makers. For example, a priori specification of environmental flow rules
can hide significant trade-offs between ecological, economic and security
outcomes. Awareness of such trade-offs could result in communities willing to

pay more in return for reduced environmental impacts.

c) Provision of adequate drought security is a key objective. Reliance on relatively
short historic data to evaluate supply security runs a very significant risk of

producing a system highly vulnerable to severe drought.

The first objective of this thesis has two components: 1) to formulate and solve

the urban water resource optimization problem in a manner that better addresses the
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practical challenges of working with solutions that involve a mix of infrastructure and
operating rule options, realistically account for drought risk and identify the trade-offs
between economic, supply security and environmental factors; and 2) to demonstrate
that failure to address these challenges comprehensively results in “optimal” solutions
that can be far from optimal and of limited relevance to urban water resources

management.

2. To extend application of multi-objective optimization to scheduling of options

to cater for future changes

The current world population of more than 7 billion is projected to reach 9.3
billion by the middle of this century (UN, 2011). Much of this growth will be in
urban areas driving the demand for more water. This situation may be further
exacerbated by future climate change (Palmer et al., 2008). The literature on optimal
scheduling of future decisions is limited and tends to focus on minimizing present
worth costs and on infrastructure investment. One consequence of focusing on
minimizing present worth costs is that the temporal discounting of costs tends to
result in lowered future levels of service. For example, the optimal minimum cost
policy may lead to more severe restriction/rationing of consumption in future stages,
an outcome unlikely to be acceptable to decision makers sensitive to temporal equity.
The second objective of this thesis is to extend application of MOO to scheduling of
decisions on infrastructure investment and operating rules to cater for future changes

with consideration of equity over the planning period.

3. To identify and evaluate the most computationally efficient multi-objective

optimization method for urban water resources application

Water resources applications typically use computationally expensive methods
for computing their objective functions (Pierro et al., 2009). For example, in one of
the case studies presented in this thesis involving the Canberra water resource system,
a 140-year simulation at monthly time steps takes approximately 2 CPU seconds.
Hence, for an optimization involving 10,000 function evaluations, the turnaround
time of nearly 6 hours is totally dominated by the simulation model rather than by the
optimization algorithm. Urban water resource models typically use long stochastically

generated records which can lead to simulation run times of the order of several
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minutes. These long run times are considered an impediment to the practical uptake
of MOO. While parallel computing can reduce turnaround times (Cui and Kuczera,
2005), there remains a strong imperative to develop MOO methods which not only
converge to the Pareto-optimal front with good diversity but do so with the fewest

possible function evaluations. This is the final objective of this thesis.

There are two tasks to address the final objective of the thesis. The first is to
identify and evaluate which of the existing MOO algorithms is best suited for urban
water resource applications. The second is to explore the potential of a recently
developed optimization method called ant colony optimization (ACO). The literature
shows that ACO performs well for difficult combinatorial problems such as the
travelling salesman problem. The challenge is to determine whether ACO can be

successfully adapted to solve problems typical of urban water resources.

1-3 Thesis Outline

This thesis consists of six chapters. Chapter 2 presents an overview of simulation
methods used in urban water resources and a review of existing MOO methods. It sets
the scene for the following three chapters which represent the primary contribution of
this thesis. Chapter 3 develops a MOO approach that addresses many of the
shortcomings of existing applications and yet is computationally practicable. A case
study involving the complex Sydney system demonstrates the benefits of the
proposed approach. Chapter 4 considers the problem of optimally scheduling
decisions over time from a MOO perspective. A case study involving the Canberra
system demonstrates the advantages and insights that the MOO approach brings to
this very difficult problem. Chapter 5 changes the focus from problem formulation to
the algorithms that conduct the search for optimal solutions. It evaluates the
performance of three benchmark algorithms using the Sydney and Canberra systems
as exemplars of urban water resources applications and also investigates the potential
of ACO. Chapter 6 concludes the thesis, summarizing its main findings and

identifying future research directions.



Chapter 2
Simulation and Optimization in
Urban Water Resource

Management
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2-1 Introduction

Decision support systems facilitate the process of decision making by providing
insight to decision makers about the consequences of implementing various options.
Two important components of a decision support system are the simulation model
and tools that support optimizing outcomes important to the decision maker.
Simulation models allow investigation of system behaviour under historical and
future scenarios. In particular, they assist in answering “what-if” questions. Thus, by
trial and error improved operating and planning strategies may be found. However, in
most real-world problems, there is a huge number of technically feasible solutions. It
is, therefore, problematic whether a trial-and-error search can identify near optimum
solutions. The success of a trial-and-error search is likely to be very dependent on the
skill of the analyst. There is a significant risk of missing good solutions and the
consequent opportunity cost to the community. This challenge has inspired the
development of a range of optimization methods in the last few decades to optimize
operating rules and investment decisions in urban water resources systems. Indeed,

this challenge is the primary interest of this thesis.

This chapter provides the necessary background for the ensuing chapters which
present the main contributions of this thesis. In the first part, a review of simulation
models used in urban water resources is conducted. This is followed by a more
detailed description of the WATHNETS simulation model that is used in the thesis
case studies. In the second part, multi-objective optimization (MOO) is reviewed.
Following a review of MOO concepts, the e-dominance multi-objective evolutionary
algorithm, eMOEA, is introduced and described prior to its use in the case studies
presented in Chapters 3 and 4. In the third and final part, the software linkage
between simulation and MOO models and the use of parallel computing is discussed

to provide an understanding of how the case studies were implemented.

2-2 Water Resource Simulation Models

Simulation models are used widely to simulate the behaviour of the water
resource systems for a given set of input conditions. These models can be generally

categorized into two groups, namely reservoir-system-simulation models and system-
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analysis models based on a network-flow programming formulation (Wurbs, 1993;

Labadie, 2004).

Reservoir-system-simulation models use operating rules to assign flows. Because
most systems are operated using operating rules, these models are widely used by
agencies responsible for planning and operation of water resource systems. While
these models may be custom built, it is more common for a water agency to build a
model of its system using a generalized model in which the system is represented by a
network of nodes and arcs (which transfer water between nodes) and all system-
specific data are stored in data files. The advantage of using a generalized model is

that it is simpler to make changes to system configuration and operating rules.

There is a wide range of generalized reservoir-system-simulation models. The
HEC-5 simulation flood control and conservation system (Hydrologic Engineering
Center, 1998) has been used widely in studies of proposed new projects and
operational modifications of existing systems. Other models include MITSIM and
TAMUWARP (Wurbs, 1995), IRIS (Salewicz et al., 1991) and RiverWare (Zagona et
al., 2001). MITSIM facilitates modelling alternative river basin development plans
involving reservoirs, hydroelectric power plants, irrigation areas, and municipal and
industrial water supply diversions. TAMUWARP is a simulation model developed for
studies involving a priority-based allocation of water resources among many different
water users. In a similar way IRIS, the interactive river system simulation, was
developed with the aim of providing a useful tool for negotiating among stakeholders
(Salewicz et al., 1991; Wurbs, 1995). A more recent development is RiverWare
(Zagona et al., 2001). It can be used to simulate a wide range of river and reservoir
configurations with diverse operational objectives and for applications ranging from

small timescale scheduling to long-term planning.

System-analysis models are based on network-flow programming (NFP) which
has been applied in a variety of operations research and systems engineering
applications. System flows between nodes are not determined by operating rules but
come from solution of the minimum cost capacitated network-flow problem (Wurbs,
1995). The NFP approach avoids much of the complexity of specifying rules for

water transfers, which can be particularly challenging when multiple flow paths exist.
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Nonetheless practical implementations of the NFP approach do use rules to determine

the costs, capacities and requirements of the network flow program.

A range of algorithms have been developed to solve the NFP problem. They
include the Out-of-Kilter (Fulkerson, 1961), RELAX (Bertsekas and Tseng, 1988)
and simplex-on-a-graph NETFLO (Kennington and Helgason, 1980) algorithms.
Kuczera (1993) compared RELAX and NETFLO and concluded that RELAX was the
superior algorithm particularly when the NFPs were iterated many times at a given

time step.

A significant limitation of the NFP approach arises when non-NFP constraints
need to be imposed — for example, when the flow in one arc is related to the flow in
another arc. The typical approach in such circumstances is to use fixed point iteration
in which the solution from the previous iteration is used to change the non-NFP
constraint into a NFP constraint. However, Ilich (2009) questioned the reliability of
fixed point iteration. He presented examples in which the use of iteration to update
non-network constraints may lead to convergence to the wrong solution. Kuczera et
al. (2009) also highlight problems using fixed point iteration. In practice, modellers
need to be careful when using the NFP approach and be aware that some systems

cannot be robustly modelled using an NFP approach.

There exist a number of generalized models based on NFP: SIMYLD (Evenson
and Moseley, 1970), ARSP (Sigvaldson, 1976), DWRSIM (Chung et al., 1989),
CRAM (Brendecke et al., 1989), MODSIM (Labadie et al., 1986), KCOM (Andrews
et al., 1992), WASP (Kuczera and Diment, 1988), REALM (Perera et al., 2005) and
WATHNETS (Kuczera et al., 2009). The REALM and WATHNETS5 models are
derivatives of the WASP model and are used by virtually all major urban water

agencies in Australia.

In this thesis, the WATHNETS simulation model is adapted. No claim is made
about the superiority of WATHNETS as a simulation model. Indeed the choice of
simulation model is not central to this thesis. WATHNETS was selected for three
reasons: 1) the availability of the source code meant to software could be adapted to
new and unplanned needs; 2) its architecture facilitates the implementation of multi-

objective optimization which is the core focus of this thesis; and 3) a WATHNETS
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model of the Sydney system, the most complex case study used in this thesis, was

available.

2-3 The WATHNETS Model

In an NFP model the water resource system is represented as a directed graph
which is collection of nodes and a set of arcs. The nodes represent source, demand or
transfer points on the network. The arcs represent flow paths from one node to
another. In WATHNETS, two types of arcs are defined, namely stream arcs which
represent rivers and conduit arcs which represent pipes. Six different nodes are
defined in WATHNETS, namely stream, reservoir, demand, waste, harvest and
junction nodes. Stream nodes represent a source of water to the system such as inflow
to reservoirs or rainfall over a catchment. Reservoir nodes represent reservoirs and
carryover storage from one time step to the next. Demand nodes represent sink points
in the network. Junction nodes represent transfer points. Harvest nodes enable
application of stochastic transfer functions such as in the modelling of domestic
rainwater tank savings or run-of-river diversions at monthly time scales. Waste nodes

act as a sink points to collect any water leaving the network.

In a network flow model, a transfer cost is assigned to all arcs. In order to force
flow through an arc, for instance, an environmental flow arc, a high negative cost

needs to be assigned. In WATHNETS, the NFP is formulated as follows:

mzin c'(xQ,D,,0)z (2.1)
subject to

Az=b(x|0Q,,D,,0) (2.2)

0<z<u(x|Q,D,,0) (2.3)

where O, and D, are vectors of inflow and demand for time t respectively, 6 is a
vector of parameters assigned by the user, A is a node-arc incidence matrix and z is a
vector of arc flows, x is a vector of decision variables (which can be optimized),

c(x]1Q,,D,,0) is a vector of costs assigned to the arcs, b(x|Q,,D,,0) is a vector of

nodal requirements, either restricted demand or streamflow, and u(x|Q,,D,,0) is a
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vector of maximum arc capacities. It is noted that c(x|Q,,D,,0), b(x|Q,,D,,0) and

u(x|Q,,D,,0) are vector functions of x, O, D, and 6 whose algorithms are specified

by the user using a FORTRAN-like script.

The formulation of the NFP in WATHNETS is best described using an example
based on the network shown in Figure 2-1. This network has two reservoirs and two
demand nodes. Reservoir spill is collected by the waste node. The stream nodes
provide stream inflow to the reservoirs. Figure 2-2 shows the full network including
hidden arcs and the hidden balancing node. Without these hidden elements it would
not be possible to simulate the system in Figure 2-1. The balance node ensures a mass
balance for the network. The demand shortfall arc is assigned a very high cost and
only conveys flow to the demand node if the demand cannot be satisfied by any other
means. This ensures the NFP always returns a feasible solution even when demand
cannot be satisfied by the real system. Waste nodes are connected to the balance node

via waste arcs.

To simulate carryover of storage, one or more carryover arcs connect each
reservoir to the balance node. By assigning sufficiently large gains (negative costs) to
the carryover arcs, the NFP will assign flows to the carryover arcs in preference to

assigning flows to a waste node.

WATHNETS offers several options to assign carryover gains. These are
illustrated in Figure 2-3 which shows the dialog box to assign carryover gains. All but
one option involve some form of manual assignment of gains to individual carryover
arcs. The remaining option, which is the one used in the thesis case studies, automates

the assignment of gains using the following equation:
Gain(i)= BG +(i-1)*1G,i=1,...,N (2.4)

where Gain(i) is the gain assigned to the i carryover arc, BG is the base gain, IG is
incremental gain, and N is the number of carryover arcs. The capacity of each

carryover arcs is set as follows:

_ ResCap
"N

i=1..,N (2.5)
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where u, is the capacity of i"™ carryover arc for the reservoir and ResCap is the

reservoir capacity.

1-Inflow 2-Inflow
[ | [ |
3-Reservoir 4-Reserveolir
6-Demand 7-Demand
O O
J-Waste
|

Figure 2-1 A simple network in WATHNETS [adapted from Kuczera (1992)]

Inflow

1
l Inflow

;:-:.3

Carryover arcs \ Carryover arcs

\ Y,
% ‘% % Qs 'TO % "%" ?
Shortfall ./  Shortfall
arc arc

Wast;Node
W’ast(e%arc

Balancing Node

700

Figure 2-2 Full network including hidden arcs and nodes for network shown in
Figure 2-1[modified from (Kuczera, 1992)]
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— Carryowver gains
Munber of carryower arcs |Z0
Carryover gain option:

® Base gain 10000 and incremental gain 100 with carryower storage in:

® Equal increments

3 Non-unifornm increments
o non-uniform gain increments with offset 0 and scaling 1.000

Figure 2-3 Carryover arcs input box

2-4 Multi-Objective Optimization

The main use of system operation models is to simulate system behaviour to
answer “what-if” type of questions. However, the ultimate goal is to find the best
solutions taking into account economic, social and environmental factors. Although it
is theoretically possible to enumerate all possible solutions to find the optimum it is

practically infeasible in most problems.

The purpose of optimization models is to facilitate finding optimum solutions.
There is a vast literature on application of optimization methods in water resources
planning with many studies focussing on reservoir operation. Yeh (1985), Wurbs
(1993) and Labadie (2004) provide comprehensive reviews of optimization methods

used in water resources.

Most of the reviewed studies have considered applications involving a single
objective such as minimizing cost or demand shortages. However, inclusion of the
environmental and social aspects into water planning naturally leads to multi-
objective optimization in which there exist two or more objectives that conflict or

cannot be optimized simultaneously.

Multi-objective optimization (MOO) has seen wide application in water
resources management. Applications include reservoir operations (Ko et al., 1992;
Liang et al., 1996; Kim et al., 2006; Reddy and Kumar, 2006; Chen et al., 2007;
Reddy and Kumar, 2007a; Reddy and Kumar, 2007b; Consoli et al., 2008; Chang and
Chang, 2009; Rani and Moreira, 2010), water distribution (Farmani et al., 2006;
Mariano-Romero et al., 2007; Pierro et al., 2009), urban drainage (Barreto et al.,
2007) and ground water (Kollat and Reed, 2006). More specifically, Chen et al.

(2007) used MOO for optimizing a multi-purpose reservoir rule. Similarly, Consoli et
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al. (2008) optimized the operational rules for irrigation reservoirs employing two
objectives. Yang et al. (2007) integrated a multi-objective genetic algorithm (MOGA)
with constrained differential dynamic programming (CDDP); they applied CDDP to
distribute optimal releases among reservoirs to satisfy water demand as much as
possible and used multi-objective genetic algorithms to generate the various
combinations of reservoir capacity. In a similar manner, Chang et al. (2009)
hybridized the genetic algorithm (GA) and CDDP to optimize capacity expansion
schedules for ground water supply; they used the GA to find the optimal capacity
expansion options and the CDDP algorithm to find the optimal pumping policy

associated with the selected expansion options.

The problems considered in this thesis involve optimization problems with K
objectives, which are, without loss of generality, all to be minimized and all equally
important. A solution is represented as a decision vector Xx=(Xi, Xz, X3, . . ., Xp) in the
decision space X. The quality of a specific solution is evaluated by a vector function
f(x) = {fi(x), ..., f(x)} which assigns to a decision vector an objective vector (fj(x),
..., fk(x)) in the objective space F. The relation between the decision and objective

spaces is illustrated in Figure 2-4.

X2 decision L f objective
4 space 4 2 space
o 59
® Q
o »@ b
. _ | e
Q . = f,
» X1 >
(x1, %, ...,Xn) » f > (f1,fo. fi)

Figure 2-4 Illlustration of decision and objective space of a multi-objective problem

In the case of a single-objective optimization problem, two solutions (x;, X;) can
be compared easily based on their associated objective (or criterion) values (f(x,),
f(x,)). However, in the case of multi-objective optimization it is necessary to

introduce the concept of dominance.
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Dominance definition: A solution' x; is said to dominate the solution x., if both

of the following conditions are true (Deb 2001):

L. f,(x) <f,(x,) forall j€{l,2,...,K}- solution x; is no worse than x; in all

objectives

2. f,(x)<f;(x,) foratleast one je&{l,2,...,K}- solution x; is strictly better

than solution x; in at least one objective

The set of non-dominated solutions for the whole search space X is called the
Pareto-optimal set. The solutions belonging to the Pareto-optimal set are said to lie on

the Pareto frontier or Pareto front.

The Pareto frontier is illustrated in Figure 2-5 for a two objective problem,
minimizing cost and minimizing restriction frequency. Solution A dominates the
solution B because it has a lower restriction frequency and a lower cost. However, A
does not dominate C because A has a lower restriction frequency than C but a higher
cost. For these reasons A and C are called non-dominated solutions. Indeed, it is not
possible to find the optimum solution without any further information about criteria

preferences.

Usually there is some higher-level information in every real optimization
problem that depends on subjective assessment of social, political, economic and
environmental factors not adequately captured in the formal optimization. This kind
of information is usually non-technical, qualitative and experience-driven (Deb,
2001). Generally, there are two approaches to deal with this higher-level information.
In Figures 2-6 and 2-7, schematics of these two approaches are shown. In the first
approach called ideal multi-objective optimization, the Pareto-optimal solutions are
found and then, using higher level information, one of the Pareto-optimal solutions is

chosen as the preferred solution (Deb, 2001).

! The notation for decisions is context specific. Here x; refers to a decision vector with label “I” rather
than the first component of the vector.
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Technically Feasible
Solution Space

cost ($)

Pareto
Frontier

Restriction frequency

Figure 2-5 Concept of Pareto optimality

In complete contrast, the second approach, called the preference-based method,
uses higher-level information at the start of optimization. This information is used to
assign a relative importance vector which assigns a weight to each objective. Based
on these weights a single objective function can be formulated. Let w;, ws....,w, be
the weights assigned to the corresponding objectives. The single objective can thus be

formulated as
F(x)= Zwifi(x) (2.6)

It is important to note that the results obtained by using the preference-based
method can be highly sensitive to the values assigned to the preference vector.
Another problem with the preference-based method is that the weight vector needs to
be supplied without any knowledge of the possible outcomes; it implicitly assumes
that the weights are independent of outcomes. In many situations, decision makers
would be reluctant to provide higher-level information or weights without knowledge
of outcomes. It is thus concluded that the ideal method is the preferred approach.
Therefore, methods for finding Pareto-optimal trade-off solutions will be the focus of

the next section.
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Figure 2-6 Schematic of ideal multi-objective optimization method (Deb, 2001)
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Figure 2-7 Schematic of preference-based multi-objective optimization method

(Deb, 2001)
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2-5 Methods for Identifying Pareto-Optimal Solutions

A good multi-objective optimization method should be able to converge to the
Pareto-optimal front quickly as well as providing a good distribution of solutions
along the front (Huang et al., 2006). There are several approaches described in the
literature that seek the Pareto-optimal front. In the following sections, two broad

classes are discussed, namely the classical and evolutionary methods.

2-5-1 Classical Optimization Methods

Classical optimization methods, which have been applied in the last four
decades, are typically based on mathematical programming approaches that under
certain conditions ensure convergence to a Pareto-optimal solution (Deb, 2001).
Weighted sum, e-constraint, weighted metric and goal programming approaches are
some examples of classical methods. These methods convert the multi-objective
optimization to a single-objective optimization problem to obtain one Pareto-optimal
solution at a time. Therefore, they have to be applied many times, with the aim of
finding a different Pareto solution at each iteration (Deb et al., 2002a). This can be
grossly inefficient compared with heuristic methods that search for the Pareto-optimal

set of solutions (Deb, 2001).

The classical methods have a number of drawbacks. First, classical methods
suggest a way to convert a multi-objective problem to a single objective problem. In
most cases the optimal solution to the single objective problem is expected to be a
solution on the Pareto frontier. However, such a solution is subject to parameters used
in the conversion approach. Thus to find N points on a Pareto front, at least N
different sets of parameters should be used to form N single objective problems.
Second, some of these methods will not be able to generate concave portions of the
Pareto front. Finally, all methods require some problem knowledge to assign suitable
weights or € values (Deb, 2001). Martinez et al. (2007) note that the performance of

these methods is sensitive to the choice of weights.

To avoid the above-mentioned significant shortcomings, many researchers have
turned to heuristic methods such as evolutionary algorithms to solve multi-objective

optimization problems.
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2-5-2 Multi-Objective Optimization Evolutionary Algorithms

The term “evolutionary algorithm” (EA) represents a class of stochastic
optimization methods that are based on the process of natural evolution. The origins
of EAs were proposed in the late 1950s, and since the 1970s several classes of
evolutionary methods such as genetic algorithms, evolutionary programming, and
evolution strategies have been proposed. EAs have been employed in a variety of
engineering applications and these algorithms have proven themselves as general,
robust and powerful methods (Deb, 2001; Coello Coello et al., 2007). They have
several characteristics that make them desirable for problems that have multiple

objectives and large and highly complex search spaces.

Over the past decade, a number of multi-objective evolutionary algorithms
(MOEAs) have been suggested (Fonseca and Fleming, 1993; Horn et al., 1994;
Zitzler and Thiele, 1998; Deb, 2001; Coello Coello et al., 2007). Of these algorithms,
NSGA-II and eMOEA were selected for use in this thesis. In Chapter 5, both of these
algorithms are evaluated in a comparative assessment of performance involving a

selection of different types of MOO algorithm.

For the case studies reported in Chapters 3 and 4, eMOEA was selected to
perform the MOO search. Given that the focus of these chapters is on improved MOO
problem formulation, the choice of MOO algorithm is not critical. It suffices to use a
MOO algorithm with a good track record of providing a diverse set of approximately
Pareto-optimal solutions. Although NSGA-II has been widely reported in the
literature and used as a benchmark method in many studies, eMOEA was selected

over NSGA-II for two reasons:

1) There was concern about NSGA-II’s ability to provide a diverse set of Pareto-
optimal solutions. This arises because NSGA-II limits the number of archived
non-dominated solutions to the population size (Laumanns et al., 2002). eMOEA
uses a different archiving strategy proposed by Laumanns et al. (2002) to
overcome this limitation. Deb et al. (2003a) compared eMOEA against several
evolutionary algorithms including NSGA-II and found eMOEA performed overall

better in terms of convergence, diversity and computation time.
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2) The comparative experiments reported in Chapter 5 confirmed this concern with

eMOEA shown to be demonstrably superior to NSGA-II.

2-5-3 An Overview of eMOEA

The purpose of this section is to provide an overview of the e-multi-objective
optimization evolutionary algorithm (eMOEA). The distinguishing feature of eMOEA
is the use of the e-dominance concept which divides the objective space into
hyperboxes of size € and allows only one non-dominated solution to reside in each
box (Laumanns et al., 2002). Inclusion of this concept in a genetic algorithm (GA)
framework produces a method capable of maintaining a diverse and well-distributed

set of solutions with a small algorithmic computational cost (Deb et al., 2003a).

As before, without loss of generality, it is assumed there are K objectives, all of

which are to be minimized.

Definition of e-Dominance: A solution x; is said to e-dominate the solution x,

for some £>0 if both of the following conditions are true (Coello Coello et al., 2007):
L. f;(x) <f;(x,) +¢; forall
2. fi(x)< f(x,)+¢, foratleast one jeil,2,...K}

Figure 2-8 illustrates the e-dominance concept geometrically. It shows two non-
dominated solutions, P; and P,. To check if P, e-dominates P,, P*; is formed by
adding €; and ¢, to the objective values of P,. Since P*;, is dominated by P1 it follows
that P; e-dominates P,. The box formed in Figure 2-8 leads to the idea of dividing the
objective space into hyperboxes to facilitate checking whether solutions are e-
dominated. Figure 2-9 illustrates hyperboxes for a two-objective space. It shows that
the solution P e-dominates the entire region ABCDA while P only dominates the
region PECFP. Indeed, any solution in the ABCDA region (except for the box in
which P is located) would be e-dominated by P because if €, and &, were added to
objectives of such a solution it would lay in hatched area. However, all the solutions
which share the same box with solution P e-dominate each other. In this case the
solution which has the shortest Euclidean distance to the bottom left corner of the box

is deemed to dominate the other solutions. This situation is illustrated in Figure 2-9
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for solutions 1 and 2. Since solution 1 is closer to the bottom left corner of the box, it

is retained and solution 2 is eliminated.
f,

P2

&

P, &

Or.

fy

Figure 2-8 Schematic of e-dominance concept

Figure 2-10 illustrates the application of e-dominance in three steps. In the first
step, for hyperboxes containing more than one solution, the solution which is closest
to the bottom left corner of the hyperbox is retained (assuming minimization). For
instance, in Figure 2-10, in two of the hyperboxes there are two solutions occupying
the hyperbox; those marked by a red cross are eliminated. The next step applies the e-
dominance criterion to the remaining solutions. For example, the lower solution in the
first column e-dominates the higher solution in the first column. Eliminating the -

dominated solutions produces the e-dominance Pareto front in step 3.

Figure 2-9 Illustration of e-dominance concept for minimizing f; and f>

(Deb et al., 2003a)
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Figure 2-10 Illustration of Pareto frontier in conjunction with the e-dominance

concept (Kollat and Reed, 2006)

eMOEA uses two co-evolving populations: a current population archive P(t) and

an archive of & non-dominated solutions E(t), where t is the iteration counter. The

initial population P(0) is selected randomly and the initial archive population is

assigned the e-non-dominated solutions of P(0). Thereafter, two solutions, referred as

parents, one each from the current and the archive population are selected for mating.

To select a parent from P(t), two solutions are chosen randomly. Then, if one of the

solutions dominates the other one, that solution is chosen. Otherwise, the two

solutions are non-dominated and one of the solutions is selected randomly. The parent

from E(t) is simply chosen at random among the archive members. Applying

crossover and mutation operations on the two parents produces two offspring

solutions. This procedure is illustrated in Figure 2-11.




Chapter 2 26

Population Archive

p I I -
Crossover
v
[
[
Offspring

Figure 2-11 Schematic of eMOEA (Adapted from Deb et al., 2003a)

Each of the offspring solutions is evaluated and then compared with the current
and archive populations for possible inclusion. First, tests are conducted to determine

if an offspring should be accepted into the E(t) archive:
1. If the offspring solution is e-dominated by any solution in E(t), it is rejected.

2. If the offspring e-dominates any solution in E(t), that solution is deleted and

the offspring added to E(t).

3. If both of the above cases fail, it indicates that the offspring solution is g-non-

dominated. In that case, the following tests apply:

a. If the offspring solution does not share the same hyperbox with any

solution in E(t), the offspring is added to E(t).

b. If the offspring shares the same hyperbox with a solution, strict non-
domination is applied. If the offspring solution strictly dominates the
archive solution or it does not strictly dominate the archive solution
but is closer to bottom left corner of the hyperbox (for minimization
problems), then it is accepted into E(t) and the archived solution is

rejected.
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If an offspring is not accepted into E(t), then tests are conducted to determine if
the offspring is to be accepted into P(t). To include the new offspring in P(t), three

tests are conducted:

1. If the offspring solution is dominated by any existing member of the

population, it is rejected.

2. If the offspring solution dominates one or more solutions in the current

population, it replaces one at random.

3. If both of the above cases fail, it indicates the offspring solution is a non-
dominated solution with respect to the current population. As a result, it

replaces a random member of the population.

eMOEA and other heuristic search methods cannot guarantee finding Pareto-
optimal solutions. For that reason it is a common practice to run these algorithms

multiple times with different random seed numbers.

The search is terminated when certain conditions are satisfied. These may

include the following:

1. No improvement in the non-dominated solution set for a prescribed number
of iterations.

2. The number of iterations reaches a maximum value.
3. A prescribed value of convergence/diversity metric has been attained.

In the next two chapters, eMOEA 1is used in the case studies to conduct the
search for Pareto-optimal solutions. However, Chapter 5 revisits the choice of MOO
algorithm with the goal of identifying the algorithm best suited to urban water

resources problems.

2-6 Optimization and Simulation Framework

A number of researchers have linked simulation and optimization methods. For
instance, Cai et al. (2001) embedded a GA into a linear programming simulation
model. Cui and Kuczera (2005) used a GA coupled to an earlier version of
WATHNETS to study single objective urban water resources problems. Shourian et

al. (2008) coupled a single-objective particle swarm optimization method with the
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MODSIM simulation model to allocate water optimally over time and space. They
treated the capacities of reservoirs, transfer and pumping systems along with

operational rules as decision variables.

The linking of the WATHNETS simulation model with a MOO algorithm can be

formulated mathematically using the notation of Egs. (2.1) to (2.3) as follows:
min  filz(x)], fo[2(0)); ., fic[2(x)] (2.7)

subject to z(x) being the solution of the following minimization problem:

mzin " (x10,D,,0)z
subjectto Az=b(x|Q,,D,,0),0<z<u(x|Q,,D,,0)

and
g(x,2)<0
where g(x,z) is a vector of constraints.

The implementation of the minimization problem given by (2.7) is schematized
in Figure 2-12. The first step is to develop the simulation model and its input data Q,,
the decision space X and the objective functions f;, f5,...,fk. Then the optimization
algorithm supervises the search for the Pareto-optimal solutions. At each iteration of
the search, a set of decisions x is selected by the optimization method and passed to
the simulation model. The simulation model simulates the system response to the
inputs O, and parameters @ to produce outputs z(x) which are used evaluate the
objective function values fi/z(x)],i=1,..,K which, in turn, are passed to the
optimization model. The optimization model then assigns a new set of decisions and
passes them to the simulation model. This process continues until a termination

condition is satisfied.
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Figure 2-12 Schematic of communication between simulation and optimization

models

2-7 Parallel Computing

In many real-world optimization problems, and particularly in water resource
problems, the computation of the objective function is expensive. In addition, in some
of these problems, it is necessary to evaluate a huge number of objective functions in
order to find solutions close to the Pareto optimum (Jaimes and Coello, 2007). This

means computation times may be days, weeks or even months.

Three strategies have been proposed in past studies to reduce computational
time. Some researchers have developed optimization methods which converge to the
optimal solution more efficiently (i.e. with fewer of evaluations) (Knowles, 2006;
Pierro et al., 2009). Another strategy involves meta-modelling (Broad et al., 2010;
Razavi et al., 2012). A meta-model is used to approximate the mapping between
decisions and objective functions. If the mapping is sufficiently accurate, the meta-
model can replace the computationally expensive simulation model. Finally, parallel
computing has gained considerable attention since it can reduce the computation time

very substantially. Civil engineering applications using parallel computing include
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applications in structural engineering (Kandil and El-Rayes, 2005), computational
fluid mechanics and water engineering (Alonso et al., 2000; Cui, 2003; Cui and

Kuczera, 2005).

One of the attractive features of evolutionary algorithms and other heuristic
methods is their ability to support parallel computing. For instance, in EAs, the
objective functions can be evaluated at each generation independently using the
master-slave. Alternatively, Deb et al. (2003b) suggested a parallel MOEA approach
based on NSGA-II which distributes the task of finding the whole Pareto-optimal
front among participating processors with each processor dedicated to finding a

particular part of the Pareto-optimal front.

There are several software protocols for implementing parallel computing,
including Message Passing Interface (MPI) (Pacheco, 1997) and Parallel Virtual
Machine (PVM) (Geist, 1994). Both MPI and PVM have been used widely. With
respect to implementing the master-worker protocol, there is little difference between
PVM and MPI. Accordingly, in this study PVM was adopted because of existing

experience and support.

PVM (Geist, 1994) is a message-passing system which allows a user to create
and access a parallel computing system consisting of multiple processors running on
multiple hosts with possibly different operating systems. The PVM model
accommodates a wide range of parallel computing models including the master-

worker, node-only, tree computation, and hybrid computation models (Geist, 1994).

The master-worker protocol is the most natural model for parallelizing
evolutionary algorithms (Cui, 2003). Following Cui and Kuczera (2005) the master-
worker protocol is described by the pseudo-code presented in Figure 2-13. The master
program hosts the MOEA. First, it spawns the PVM and determines the number of
worker processes. The initial population is then generated and the corresponding
decisions are sent to the workers for evaluation. When the initial population has been
evaluated, the master enters the main iteration loop. The MOEA produces the next
generation of decisions applying crossover and mutation operations on selected
parents. These decisions are sent to the first available worker for evaluation. The

master then waits until it receives a vector of objective function values from a worker.
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That solution is then processed. It may be added to either the Pareto or population

archive or discarded. The iterations continue until a termination criterion is met.

Master program
Spawn the PVM
Generate initial population
Send initial decision vectors to the workers for evaluation
Evaluate the initial objective functions
Do
Produce a new decision vector using operations such as crossover and mutation
Send decision vectors to an idle worker
Wait and receive objective function values from any worker

Process the new solution
Stop if a termination criterion is met

End do
Display results
Terminate worker processes

End PVM program

Worker program
Do
Wait for a message of decision vectors sent by the master
Run simulation model and evaluate objective functions
Send objective function values to master

End do

Figure 2-13 Pseudo code for master-worker protocol in PVM
(Adapted from (Cui, 2003))

In worker program, the worker waits until it receives a decision vector from the
master. It then runs the simulation model, computes the objective functions values

and send them to the master. It then waits for a new decision vector.

Because the message passing between the master and worker processors involves
small data strings and because the time taken by a worker processor to conduct a

simulation is, at least, several orders of magnitude longer than the time to pass a
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message, the speed-up is almost exactly proportional to the number of worker

Processors.

2-8 Summary

In this chapter a brief review of current simulation and optimization methods
was presented with the objective of selecting a simulation model and an optimization
method for use in subsequent chapters which constitute the main contribution of this
thesis. Each selected model was then described in more detail to provide sufficient
background for the case studies that appear in the subsequent chapters. The
WATHNETS model was selected for reasons of convenience — its source code was
available, its software design facilitated linkage with MOO methods and a complex
urban system had already been set up in WATHNETS. The eMOEA algorithm, an
established method with good reported performance, was selected to conduct the
multi-objective optimization case studies reported in the next two chapters. An
overview of the communication protocols between the simulation and optimization

models in a parallel computing environment concludes this chapter.
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Multi-Objective Optimization of
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3-1 Introduction

Recent Australian experience with arguably the severest drought on record and a
potentially shifting climate has highlighted the vulnerability of urban water supplies
to “running out of water”. As storages dwindled in the major urban centres of Sydney,
south-east Queensland, Perth, Melbourne and Adelaide, agencies responsible for
urban water supply triggered drought contingency plans which started with the
imposition of restrictions and, in most cases, led to the development of climate-
independent sources of water such as desalination and wastewater reclamation. To
secure Australian cities against drought, investments totalling tens of billions of

dollars have been committed.

In an Australian industry position paper describing a framework for urban water
resource planning, Erlanger and Neal (2005) state in their opening: “A safe and
reliable water supply system is of utmost importance to the community. It is expected
and understood that water utilities manage their water resources so that communities
never run out of water.” Erlanger and Neal recognize that failure to supply minimum
water needs for an extended period would most likely result in disastrous social and
economic losses that could conceivably threaten the very existence of the urban

community.

Managing drought security in urban water supply is a complex and costly task,
typically tackled using a two-pronged risk management approach, implementing
short- and long-term options. The risk of exposure to severe drought is managed by
application of long-term options such as policies that affect water use efficiency and
provision of long lead-time infrastructure. Specifically, these long-term options
control the probability of triggering short-term options or drought contingency plans,
which may involve restrictions/rationing and short-lead time (and usually very

expensive) source augmentation or substitution.

In view of the massive investments to secure Australian cities against drought,
this chapter considers the question, what is the best mix of long- and short-term
options in an urban headworks system? Here “headworks” refers to that part of the

urban water supply infrastructure that harvests, stores and distributes water to major
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consumption zones. In seeking an answer to this question, several practical

considerations deserve particular attention:

1. The maximization of drought security conflicts with the objectives of
minimizing cost and environmental impacts. Recognizing the difficulty
of quantifying environmental and social impacts solely in economic
terms, multi-objective optimization (Deb, 2001) is needed to identify the

trade-offs between conflicting objectives.

2. The consequences of an urban area “running out of water” are so severe
that most systems are designed to have very high levels of security. This
means that the probabilities of triggering drought contingency plans,
particularly during extreme drought, are likely to be very small, while the
probability of “running out of water” should be even lower. Because
drought security criteria are often expressed in terms of probabilities of
trigger events (Erlanger and Neal, 2005), it is vital that such probabilities

be accurately estimated.

3. The performance of an urban headworks system is jointly dependent on
the mix of short- and long-term options. Therefore, in a search for the
best solution, it is essential that both short- and long-term options be

evaluated jointly.

It is shown in the review of the water resource optimization literature in
Section 3-2 that no previous work has adequately addressed all these practical
considerations. The principal contribution of this chapter is twofold. First, the
problem of optimizing the planning and management of urban water resources is
formulated in a manner that addresses all these considerations. Specifically, the
formulation addresses the practical challenges of identifying approximate Pareto-
optimal solutions involving the full mix of short- and long-term options, while
realistically accounting for drought risk and the trade-offs between economic,
security and environmental factors. Second, a case study demonstrates the practical
importance of addressing these challenges. It shows that failure to address these
challenges can result in solutions that are significantly inferior and of limited practical

value to headworks managers.
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This chapter is organized as follows: Following a review of the literature, the
shortcomings of existing methods are identified and motivate a new approach that
more fully deals with the requirements of practical multi-objective urban water
resource planning. An extensive hypothetical case study based on the headworks
system for Sydney (Australia) demonstrates the practical importance of adopting this
new approach and illustrates the challenges and insights identifying the approximate
Pareto-optimal solutions that trade-off economic costs, environmental and drought-

related social impacts.

3-2 Review of Urban Water Resources Optimization Literature

In the quest for securing urban water supplies against drought, water utilities use
a mix of short- and long-term options to manage supply and demand. The short-term
response to drought is embodied in a drought contingency plan (DCP). It is common
practice to develop a staged DCP that progressively imposes severer restrictions on
consumption while accessing emergency sources of water. The fundamental
proposition is that the DCP reduces (and nowadays with the availability of climate—
independent sources of water such as desalination, potentially eliminates) the risk of
the system running out of water. A number of optimization studies have explored the
benefit of imposing restrictions on demand to mitigate drought. For instance, Shih
and ReVelle (1994, 1995) developed hedging rules for a single reservoir to reduce
demand during drought. Tu et al. (2003, 2008) developed a mixed integer linear
programming model that jointly considers reservoir release and hedging rules to
minimize the shortages in current and future water supply. A limitation of these
studies is that the social and economic cost of imposing restrictions was not
addressed. Although imposing restrictions on demand reduces the risk of running out
of water, frequent restrictions are not socially acceptable in major Australian cities

(Erlanger and Neal, 2005).

In response to reducing the frequency of restrictions yet maintaining security,
water utilities consider a range of long-term options to reduce demand and increase
supply. However, each option imposes a cost on the community and environment. A
number of studies have developed models to find the least-cost combination of short
and long-term options. Lund (1987) evaluated the integration of water conservation

measures with capacity expansion options showing that costs could be minimized by
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applying conservation measures to delay water treatment plant expansion. Rubinstein
and Ortolano (1984) demonstrated the application of demand management in long-
term water supply planning. In a similar vein, Dziegielewski et al. (1992) developed a
framework to balance long-term water supply alternatives with short-term drought
responses in order to identify the most cost-effective investments offering long-term
drought protection. Subsequently, Wilchfort and Lund (1997) minimized the expected
cost of a combination of long-term and short-term options. Jenkins and Lund (2000)
integrated shortage management and yield models to identify operating rules that
minimize operating and shortage costs. However, as Dziegielewski et al. (1992)
emphasize, the usefulness of these approaches depends on the accuracy and validity

of costs associated with short-term demand-reduction measures.

Due to difficulties in estimating costs associated with restrictions or shortages, a
number of studies (Randall et al., 1990; Ko et al., 1992; Liang et al., 1996; Kim et al.,
2006; Reddy and Kumar, 2006; Chen et al., 2007; Yang et al., 2007; Kim et al., 2008;
Chang and Chang, 2009; Kasprzyk et al., 2009) have adopted a multi-objective
optimization approach. All of these studies except Yang et al. (2007) and Kasprzyk et
al. (2009) have focused on short-term decisions associated with reservoir releases and
restriction rules. However, there is an interaction between short- and long-term
options as demonstrated by Lund (1987). Yang et al. (2007) investigated the
interaction between reservoir operating rules and reservoir capacity but did not
incorporate any DCPs. Kasprzyk et al. (2009) focused on water marketing and
portfolio-based management strategies in the context of a single reservoir system,;

they did not optimize infrastructure options nor DCPs.

The rationale for multi-objective optimization is strengthened when
environmental impacts are considered. Rivers downstream of dams typically
experience a hydrologic regime change which can adversely impact on the health of
riverine ecosystems (Shiau and Wu, 2007). In recent years, in an effort to support
sustainable ecosystems, releasing sufficient water to meet instream flow requirements
— environmental flows — has received considerable attention from the water resources

management community (Richter et al., 2006).

In many past studies, environmental flows have been considered as a constraint

(Tu et al., 2003; Tu et al., 2008). However, this hides the trade-offs between cost,
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supply security and environmental impact. Suen and Eheart (2006) circumvented this
shortcoming using multi-objective optimization to demonstrate the trade-off between
human and ecosystem needs in which the ecosystem objective was to maximize the
similarity between natural and flow released from the reservoir. Likewise Shiau and
Wu (2007) applied multi-objective optimization to optimize weir operation to balance
ecosystem and human needs. However, these studies ignored the cost dimension and
only focused on operational rules. By explicitly presenting the trade-offs between
cost, drought security and environmental impact, Erlanger and Neal (2005) suggest

communities may be prepared to pay more in return for less environmental damage.

To evaluate the performance of an urban headworks system, a simulation model
is typically constructed to model the behaviour of the system in response to a time
series of hydro-climatic and demand inputs — see Labadie (2004) for a review. The
length of the time series used as input is critical. Given that urban systems typically
operate with high levels of reliability, the time series must be long enough to enable a
meaningful assessment of drought risks. The significance of this issue is best
illustrated by an example. The annual probability of triggering a DCP, p, .., can be
estimated by counting the number of years the DCP is triggered in a simulation and

dividing by the number of simulation years N. Assuming annual independence, the

standard error of the estimate based on binomial probability model considerations is

. 1., .
stderr(ppep) = \/_ Pocr (1= Ppep)
N (3.1)
Suppose in a 100-year simulation, the DCP was triggered once. Then

Pper =0.01and the standard error is 0.010. This large uncertainty can be presented

more intuitively using return periods; it can be shown that the 95% confidence limits
on the return period for the DCP trigger are 23 and 1580 years. This uncertainty arises

solely because of the insufficient length of the simulation.

This example suggests that evaluating drought risks and associated drought
security criteria using simulation models with insufficiently long input time series
borders on being meaningless with the results being sensitive to the choice of the
input time series. Indeed Ajami et al. (2008) suggest that use of historical data can

lead to development of inefficient water management rules.
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One way to reduce this sampling uncertainty is to increase the length of the input
time series. This can be done by generating long stochastic input time series by
sampling from probability models fitted to historical data (Salas et al., 2005). All but
three of the reviewed multi-objective optimization applications to urban water
resource systems used historical data. Though Kim et al. (2008) and Shiau (2009)
used 100 and 40 years of synthetic data respectively, such record lengths are
considered completely inadequate for use with high security urban systems. In their
study of many-objective portfolio planning Kasprzyk et al. (2009) evaluated the
performance of each proposed portfolio with 5,000 10-year Monte Carlo samples.
However, their Monte Carlo strategy involved resampling 10-year samples from a 33-
year historical record, which is statistically unlikely to include severe drought. That
said, Kasprzyk et al. did consider solution robustness by investigating sensitivity to
initial conditions and extreme drought/demand scenarios. As a result, all of the
reviewed studies suffer from the potentially serious limitation that the Pareto
solutions are not robust in the sense of the solutions being sensitive to the choice of

input data used in the simulation.

3-3 A More Practical Multi-objective Optimization
Methodology for Urban Water Supply

This section formulates a multi-objective optimization methodology for an urban
headworks system which addresses all the shortcomings identified in previous work
on this subject. In the following section a case study is used demonstrate the practical

significance of addressing these shortcomings.

Generally, the urban headworks multi-objective optimization problem can be

formulated as follows:
min £,[2(0)], £,[2(0L - £, [2(2)] (3.2)

subjectto z(x) = M[x,0, D, ]

g(x,z(x))<0
Sy =0

where x is a vector of decision variables that are to be optimized.
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The function M[x,0Q,,D,] represents the headworks simulation model which
takes as input Q, , a matrix of streamflow and climate values at multiple sites for an
N-year period, and D, , a matrix of unrestricted demand at multiple sites for the same

N-year period, to produce simulation outputs z(x). There are many simulation

models in the literature (Labadie, 2004) capable of simulating urban headworks
systems. All that matters is that the model satisfactorily simulates the actual operation
of the headworks system using information that would be available to the operators.

The simulation outputs are used to evaluate f(Z,), the vector of criterion (or

objective function) values. The function g(x,Z,,) is a vector of constraints.

The constraint Sf,, =0 1is essential to the urban headworks optimization
problem. It requires that no unplanned demand shortfalls, denoted by Sf, , occur

during the simulation. Unplanned shortfalls occur when the demand, permitted by the
DCP, cannot be supplied — such shortfalls typically would occur when reservoirs run
dry or when limitations in transfer capacity result in demand zones being supplied

less than the minimum permitted by the DCP.

The optimization problem (3.2) is largely intractable using classical optimization
approaches which typically impose severe constraints on the form of the simulation

model M[x,0Q,,D,] and constraints g(x,Z,) and therefore restrict the inclusion of

variables in the decision space. However, the advent of evolutionary optimization
algorithms — see (Deb, 2001) — has made the solution of (3.2) significantly more
tractable. In the water resources field, many researchers have recognized and
exploited this opportunity — see the recent review by Labadie (2004) and Nicklow et
al. (2010). Of particular importance to this study is the greater freedom in specifying
the decision vector. This enables optimization of the full mix of decision variables

associated with short- and long-term options.

The formulation (3.2) differs from previous formulations in the way it deals with
drought security. The specification of drought security in the sense of Erlanger and
Neal (2005), namely urban “communities never run out of water” is problematic.
Unless climate-independent sources of water (such as desalination) can guarantee a

minimum supply, there will always be a finite probability that the system will run out
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of water. This is unavoidable. The best that one can do is manage the risk of running

out of water.

The optimal solutions in (3.2) are conditioned on the input Oy. A more useful
interpretation is that the Pareto-optimal solutions (3.2) secure the system against
droughts with return periods up to an expected value of N years. Seen this way, the
expected return period N defines the drought security risk level for the system. As
will be demonstrated, the explicit recognition of this risk level is vital to practical

optimization outcomes.

3-4 Case Study

This section presents a case study to illustrate the application of the multi-
objective optimization formulation (3.2) and to identify important insights arising
from its application. It is motivated by the headworks system that supplies Sydney,

Australia’s largest city serving a current population of 4.5 million.

3-4-1 Optimization Implementation Issues

Chapter 2 provided an overview of the simulation and optimization models used

to implement Eq. (3.2) in this study. This will be briefly reviewed here.

Similar to Cai et al. (2001), Cui and Kuczera (2005) and Yang et al. (2007), a

two-level optimization approach is adopted. For the simulation model M[x,Q,,D,],

the WATHNETS model (Kuczera, 1992; Kuczera et al., 2009) is adopted. The
scripting language within WATHNETS enables the user to specify quite complex
run-time functions to assign arc capacities and costs and side constraints to the
network linear program. The decision vector x is accessible to all scripts and,

therefore, can fully control the specification of the network linear program.

A major implementation issue in this case study was the computational time to
solve the optimization problem (3.2). The total computational time is proportional to
N, the number of years of simulation. In this case study, a 10,000-year simulation
using monthly time steps takes approximately 60 seconds on an Intel T7700 CPU
running at 2.40 GHz. If the multi-objective optimization algorithm evaluates 20,000

different decision vectors, the total run time will be about 14 days. Extensive use was
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made of parallel computing in conjunction with eMOEA to make the multi-objective

optimization tractable.

3-4-2 Description of Sydney Headworks System

The case study considers a simplified representation of the Sydney headworks
system which, nonetheless, accounts for many of the interesting dynamics of the
Sydney system. It considers several scenarios involving a hypothetical mix of short-
and long-term options that cater for a future population of 7 million corresponding to

a highly stressed system.

Figure 1-1 presented a graphical depiction of the Sydney headworks system. The
representation of this system in WATHNETS is presented in Figure 3-1 in which the
nodes labelled “R” represent reservoirs, “S” stream nodes, “D” demand zones, and
“W” waste/sink nodes. The network of reservoirs, pumping stations and water
treatment plants supplies water to two demand zones labelled “Sydney” and “South”
in Figure 3-1. The existing system has a total storage capacity of 3,343,487 ML
(mega litres). Warragamba Reservoir is the largest reservoir in the system with a
capacity of 2,031,000 ML. The Sydney demand zone, which serves approximately
90% of the population, is supplied by Warragamba Reservoir together with a number
of smaller reservoirs, Avon, Woronora, Cataract, Nepean and Cordeaux. In contrast,
the South demand zone, which serves the remaining 10% of the population, is only
supplied by Nepean and Avon Reservoirs. An inter-basin transfer scheme augments
the natural inflows into Warragamba and Nepean-Avon Reservoirs. The transfer
scheme is located on the Shoalhaven River and involves a small pondage at Lake
Yarrunga from which water is lifted over 500 m using two pumping stations to
transfer water to Wingecarribee Reservoir from where it can be transferred to
Warragamba or Nepean Reservoirs. The pump stations have a monthly transfer

capacity of 46,600 ML.




Chapter 3 43

38-L. Yarunga natura

37-Welcome Reef natu

14-Pacific Ocean

34-W.Reef Inflow 19-Welcome Reef

20-Penrith Weir

10-Lake Yarrunga 15-Warragamba Inflow

17-L.Yarrunga Dummy | 3\
9-Fitzroy Falls Res
1 Warragamba Res

18-Fitz Falls Inflow AN //

35-FF junction = /\ )
i\ 13-Pheasants Nest We
_8-Wingecarribee Res

— 11 Broughton Pass We /
— 12 Pros ect Res

1 '3;:\ 26-Sydney Commercial

16-Wingecarribee Inf —_ -

N\ \‘ —30- Sydney Indoor Dom
21-Nepean Inflows Nepean Res 25 Woronora Influws \‘\

A ‘ L

41 Cataract Res
28-South Qutdoor Dom / \
5-Cordeaux Res /  27-Sydney Outdoor Do
T 6 Avon Res /
3 South Coast Junc 2-Woronora Res L\
31-South Indoor Dome W/ 24- Cataract Inflons
22- Avon Inflows Eﬁ\ ~32-Desalination

29-S0 Commercial ER 23-Cordeaux Inflows

33-Pacific Qgeanff”

Figure 3-1 WATHNETS schematic of Sydney water supply headworks system - the
nodes labeled “R” represent reservoirs, ‘S’ stream nodes, “D”’ demand zones, and

“W” waste/sink nodes

For the purposes of this case study, environmental flow considerations are
restricted to the Wollondilly River between Wingecarribee and Warragamba
Reservoirs. The primary environmental issue is to limit high flows when pump
transfers from the Shoalhaven are in progress, to avoid adverse impacts on riverine
ecosystem function. Scott and Grant (1997) investigated the impacts of high flows on
the riverine ecosystem and recommended maximum monthly regulated flows to avoid

ecological impacts.

In this case study, two options for augmenting the supply are available. The first
is a new dam at Welcome Reef on the Shoalhaven River, upstream of Lake Yarrunga.
The second is a desalination plant serving the Sydney demand zone. This latter option
is strategically different from Welcome Reef in that it provides a climate-independent

supply of water.

The supply zones, Sydney and South, are each disaggregated into three demand
nodes representing domestic indoor, outdoor watering and commercial/industrial
consumption. In this case study, the DCP only restricts the outdoor watering usage. It
is recognized that rationing during severe drought would be extended to the other

usage categories.
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3-4-3 Streamflow and Demand Data

The Sydney system experiences high natural climate variability. For instance, the
annual coefficient of variation for inflows to Warragamba Reservoir is about 1.1. In
view of this variability and the multi-year persistence of droughts, the reservoirs in
the Sydney system have significant over-year carryover capacity. Therefore, when
generating stochastic hydro-climate data for this system, it is important that the
stochastic model produces sequences that are consistent with the multi-year observed
statistics such as cumulative overlapping n-year sums (with n ranging from 1 to 5
years). The following two-step algorithm was used to generate stochastic streamflow
and climate data: 1) annual values were generated using the Matalas (1967) lag-one
multi-site model calibrated to non-contiguous historical streamflow and climate
records up to 84 years long using the missing-data EM algorithm (Kuczera, 1987);
and 2) monthly values were obtained by disaggregating the annual flows using the
method of fragments. Extensive testing has revealed this model produces multi-year
statistics consistent with the observed data. Indeed, Thyer et al. (2006) argue that
more complex stochastic models describing decadal to multidecadal-scale variability

are not identifiable using historical records of the length available in the case study.

To explore the sensitivity of the approximate optimal solutions to the choice of
drought security return period, two sets of stochastic data were used: one 500 years
long and the other 10,000 years long. It is noted that the 500-year series corresponds
to the first 500 years of the 10,000-year series.

Demand for the 7-million population scenario was disaggregated into indoor
domestic, outdoor domestic and commercial/industrial categories. Because outdoor
domestic demand is correlated with rainfall, it was stochastically generated using the
stochastically generated rainfall as input. This ensures that the higher outdoor water

usage during droughts is preserved in the stochastic data Cui (2003).

The following steps were applied to determine water demand at each demand

node:

1. Generate the monthly average indoor per capita water consumption

(InWater(k), k=1,...,12) using the data in Table 3-1.
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2. Generate concurrently with streamflow the number of rain days at
Prospect reservoir denoted as Rainit(k), k =1,...,12 which presents rain

days for replicate i in year t.
3. Compute the total monthly demand for the following categories:
a. Indoor residential demand
InHousel (k) = InWater(k) x population(t, k) (3.3)
where population(t,k) is the population for month t and year k
b. Outdoor residential demand
ExHousel (k) = [A(k) + B(k) x Rain{(k)] x population(t, k) (3.4)

where A(k) and B(k) are parameters obtained from a monthly
regression analysis between per capita outdoor water consumption

and number of rain days (Cui, 2003).

c. Commercial demand

Commerciali(k) = [InHousel(k) + ExHousel(k)] x % (3.5

Table 3-1 Average monthly per capita indoor water consumption

Month | 1 [ 2 [ 3 [ 4[5 6 [ 7 89 [10]11]12
Indoor | 3| 3| 4| 4| 4| 4| 4| 4| 4| 4| 4| 4
98 | 89 | a5 | 0 | 31 ] .05 ] 22 20| .01 ] 23] .17 .29

3-4-4 Decision Variables

A large number of options is available to ensure a secure water supply for
Sydney’s 7-million population scenario. In this case study, eleven decision variables,
listed in Table 3-2, were identified as being potentially important. They are classified
as either infrastructure (which corresponds to a physical asset) or operational (which

affects the way the system is operated).

Decisions x; and x; control the pump transfer of water from the Shoalhaven

basin. x; is a pump mark that defines the Warragamba storage fraction which triggers
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transfer of water from Shoalhaven to Warragamba; if the storage fraction in
Warragamba is below the pump mark x; at the start of a month, the maximum pump
transfer capacity is activated. A separate pump mark x; is applied to Avon on account

of it being the main supply to the South demand zone.

Table 3-2 List of decision variables x

Decision Description Lower Upper Category

variable limit limit
1 Pump mark Warragamba 0.3 1 Operational
2 Pump mark Avon 0.3 1 Operational
3 Level 1 restriction trigger 0.05 0.95 Operational
4 Trigger increment 0.05 0.25 Operational
5 Desalination plant capacity (ML/day) 0 1,000 Infrastructure
6 Desalination plant trigger 0.05 0.95 Operational
7 Welcome Reef capacity (ML) 0 1,000,000 | Infrastructure
8 Warragamba base gain 8,000 12,000 Operational
9 Warragamba incremental gain 10 200 Operational
10 Maximum Wollondilly flow during 12,200 100,000 Operational

September to March (ML/month)
11 Maximum Wollondilly flow at other 18,300 100,000 Operational
times (ML/month)

Decisions x3 and x4 define the first stage of the DCP. When the total storage
fraction falls below the trigger x3, the first level of restrictions is imposed on outdoor
domestic water use with a target reduction of 33%. If the total storage fraction falls
below (x3 — x4), then the second level of restrictions is imposed with outdoor
domestic water use reduced by 67%. If the total storage fraction falls below (x3 —
2x4), then the third level of restrictions is imposed with outdoor domestic water use

totally banned.

Decisions x5 and x¢ define the second stage of the DCP. When the total storage
fraction falls below the trigger xq, the already-constructed desalination plant with

daily capacity of xs ML/day is activated.
Decision x7 defines the capacity of Welcome Reef Reservoir.

Decisions xg and X9 define the priority for storing water in Warragamba. All the
reservoirs in the WATHNETS network flow program were assigned 20 carryover arcs
which “store” water for the next time step. Each carryover arc has a capacity equal to

1/20 of the reservoir capacity and a gain (i.e. negative cost) defined by

Gain(j)=BG+(j-1)*IG, j=1,...,20 (3.6)
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where BG is the base gain and IG is the incremental gain. See Chapter 2 for a fuller

discussion on the way carryover arcs are implemented in WATHNETS.

On account of Warragamba’s dominant storage, all reservoirs except
Warragamba were assigned a base gain of 10,000 and an incremental gain of 100.
This implements the so-called space rule that seeks to keep each reservoir with the
same storage fraction. Decisions xg and X9 define the base and incremental gain for
Warragamba respectively. Depending on the values assigned to xg and X9, water may

be preferentially stored in Warragamba or in the rest of the system.

Finally decisions x;¢ and x;; define the maximum monthly Wollondilly transfer
capacity during September to March and at other times respectively. The lower limit
on these decisions corresponds to that recommended by Scott and Grant (1997).
These two decisions are active in the three-objective scenario and fixed in the other

scenarios. These scenarios are discussed in Section 3-5.

3-4-5 Objectives and Constraints

Three objectives were judged to be relevant to the case study:

Minimize frequency of restrictions (%0): Erlanger and Neal (2005) state that
the supply system should be capable of maintaining an adequate level of supply most
of the time. Accordingly, the frequency of restrictions describes the fraction of the
time consumers will not have an adequate level of supply. Cui and Kuczera (2005)
used willingness—to-pay concepts to estimate the economic cost of restrictions from
which they estimated the economically optimal frequency of restrictions. Here, the
restriction frequency is made an explicit criterion in recognition of the difficulty of
accurately estimating the economic cost and the political/social sensitivity that is

associated with imposition of restrictions.

Minimize the present worth cost ($): The present worth cost is the sum of
capital and discounted expected operating costs and the costs of unplanned shortfalls.
The capital cost represents the cost of building new infrastructure, which in this case
study, is the Welcome Reef dam and/or the desalination plant. Table 3-3 summarizes
the capital costs for Welcome Reef and the desalination plant. The capital cost model

uses a binary function: if the asset is selected by the optimization, then the total cost
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is the sum of a fixed setup cost and a cost proportional to the size of the asset;
however, if the asset is not selected, the capital cost is zero. The operating cost
includes the costs for pumping transfers from the Shoalhaven and operation of the

desalination plant. A 5% discount rate was used.

To ensure the DCP adequately copes with all droughts during the simulation
period, solutions are constrained to avoid unplanned demand shortfalls. In this case
study, an unplanned shortfall occurs when the system is unable to supply domestic
indoor and commercial/industrial demand. This would occur when the highest
restriction level, that bans all outdoor water use, is in force and the reservoirs become

empty.

The constraint on unplanned shortfalls is imposed using a penalty function
approach. Here, a penalty of $100,000 per ML unplanned shortfall is added to the
present worth cost. This penalty was selected to steer the optimization search away
from solutions which allow reservoirs to “run dry” with consequent failure to supply

minimum water needs.

Table 3-3 Cost summary for infrastructure decision variables

Decision Variable Fixed and Unit Costs
Desalination plant capacity (ML/day) $1,250,000,000 + $4,000,000 ML/day
Welcome Reef capacity (ML) $100,000,000 + $1000/ML storage

Minimize environmental stress on the Wollondilly River: In this case study,
the Wollondilly River between Wingecarribee and Warragamba Reservoirs has been
identified as ecologically important. There is a vast literature that examines the
ecological impacts of altered flow regimes. For example, Tharme (2003) documented
over 200 individual environmental flow methodologies which have been utilized in
44 countries. Arthington et al. (2004) outlined the characteristics, strengths and
limitations of the category of techniques termed holistic methodologies. In another
study, Petts (2009) reviewed the advances in environmental flow science over the
past 30 years. In a more targeted review, Dewson et al. (2007) reviewed literature on
the consequences of natural low flows and artificially reduced flows on habitant

conditions and on invertebrate community structure, behaviour and biotic
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interactions. These studies underscore the difficulty in characterizing ecological

response.

As the purpose of this case study is illustrative, a notional response function is
developed based on the field studies by Scott and Grant (1997) who identified
potentially adverse impacts of altered flow regimes on platypus and water bird
populations in the Wollondilly River. To avoid these impacts, they recommended that
the maximum monthly regulated flow be limited to 18,300 ML during the winter
months from April to August, and to 12,200 ML during the summer months. The
ecological impact of exceeding these recommended maxima is not well understood
(Grant and Temple-Smith, 2003). Nonetheless, it is known that during the summer
months, high flows have the highest impacts on the breeding of platypus and water
bird populations, while the impacts of high flows are significantly less severe during
the winter months. Accordingly, the following environmental stress metric was
adopted to penalize the adoption of maximum regulated flow limits, x;o and x;;, in

excess of those recommended by Scott and Grant.

max| 0, 5 4, 12200 if me{Sept,..,March}
12200
Stress(m)= 3.7)

g, —18300) |. .
max | 0, | 22— | |if me{April,.., August
{ ( 18300 (AP gusty

where g, is the actual regulated release in the Wollondilly in month m and Stress(m)

is the penalty for exceeding the recommended flow limits in month m. The
environmental stress criterion is the sum of the monthly stresses over the simulation.
Unlike the first two criteria, the environmental stress criterion is based on limited
field data and relies on subjective judgments such as the impact in summer months is
5 times that of winter months and that the impact is cumulative. Consequently, the
trade-offs between environmental stress and the other criteria need to be interpreted
with the understanding that there is considerable epistemic uncertainty about the

environmental impacts.

Apart from the constraint on unplanned shortfalls, which was implemented using
a penalty function approach, the only other constraints were the limits on the decision

variables summarized in Table 3-2.




Chapter 3 50

3-5 Case Study Scenarios

Seven case study scenarios are used to illustrate the importance of using an
optimization formulation that deals with the shortcomings identified in the literature
review. The first two scenarios demonstrate the importance of jointly optimizing the
full mix of decisions, particularly when there are interactions between short and long-
term and/or operational and infrastructure decision variables. Then, three different
scenarios are used to demonstrate the influence of environmental constraints on
system behaviour and the beneficial aspects of treating an environmental constraint as
an objective. Finally, a comparison of two sets of scenarios with different input data
length highlights the practically serious shortcoming arising from use historical or
short-length synthetic data when there are expectations of high levels of drought

security. A summary of these scenarios is presented in Table 3-4 as a reference.

Table 3-4 Summary of case study scenarios

Scenario Decisions Optimization criteria Record Purpose
number length
(years)
1 1to9; Present worth cost 500 Study consequences
10,11 set to upper Restriction frequency of fixing
limit operational
2 5,6,7,; Present worth cost 500 decisions
10,11 set to upper Restriction frequency
limit
3 1to9; Present worth cost 500 Contrast use of
10,11 set to lower Restriction frequency environmental
limit constraints against
4 1t09; Present worth cost 500 environmental
10,11 set to upper Restriction frequency trade-offs
limit
5 1to1l Present worth cost 500
Restriction frequency
Environmental stress
6 1t09; Present worth cost 500 Contrast solutions
10,11 set to upper Restriction frequency with different levels
limit of drought security
7 1t09; Present worth cost 10,000
10,11 set to upper Restriction frequency
limit

For all seven scenarios, the eMOEA algorithm was run with 10 different initial
random number seeds. Recognizing that an evolutionary algorithm cannot guarantee
convergence to the Pareto-optimal solutions, the approximate Pareto-optimal
solutions are taken here to be the non-dominated solutions from the 10 runs. The first

four scenarios were run for 30,000 generations, while Scenario 5 was run for 100,000
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generations and Scenarios 6 and 7 for 10,000 generations. eMOEA terminated its
search if the maximum number of generations was reached or if the Pareto solutions
did not change after 1000 generations. The eMOEA parameters were tuned to ensure
good coverage and diversity along the Pareto front. The tuned parameters were the
same as the parameters obtained in the tunning of eMOEA in Section 5-6-1: mutation
rate = 0.01; crossover rate = 1.00; Inversion rate = 0.005; population size=100; and
the hyper-box epsilons for the restriction criterion 0.005, for the present worth cost

criterion $1000 and for environmental stress criterion 0.001.

3-5-1 Joint Optimization of Operating and Infrastructure Decision

Variables: Scenarios 1 and 2

This section compares the approximate Pareto-optimal solutions for two
scenarios which differ in the mix of decisions to be optimized. In Scenario 1, all
operational and infrastructure decisions were optimized except for decisions 10 and
11 which were fixed at their upper limit. In contrast, in Scenario 2, the optimization
problem is akin to asking what is the best capacity expansion option with the rest of
the system operated as normal. Accordingly, only two infrastructure decisions, the
desalination plant and Welcome Reef reservoir capacities, and the desalination
operational decision, the desalination plant trigger, were optimized; the remaining
operational decisions were set to the following values guided by the desire to
minimize operating costs and the frequency of restrictions: x;=0.3; x,=0.3; x3=0.5;
x4=0.05; x5=10,000; x¢=100. In each scenario, two objectives were considered,

namely minimizing the present worth cost and restriction frequency.

Figure 3-2 shows the approximate Pareto-optimal fronts for the two scenarios.
There is a considerable gap between the two Pareto fronts with the scenario 1 Pareto
front dominating the Scenario 2 front. By optimizing all the operational decisions,
considerably lower present worth costs can be achieved for the same restriction
frequency. Clearly fixing some of the operational decisions severely limited the
ability of the optimization to take full advantage of the desalination plant and the
Welcome Reef Reservoir. In Scenario 2, because the restriction trigger x3 was set to
0.50, it was impossible to produce outcomes with a restriction frequency greater than
20%. Likewise, the restriction frequency could not fall below 2.5%, because the

desalination plant and Welcome Reef capacities were at their upper bounds.
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Figure 3-2 Approximate Pareto-optimal fronts for Scenario 1 (all decisions
optimized) and Scenario 2 (two infrastructure decisions and one operational decision

optimized)

While the gap between the Pareto fronts is dependent on the choice of values
assigned to the decisions not optimized in Scenario 2, the important conclusion to be
drawn is that when operational and infrastructure decisions interact, the failure to
optimize all decisions can lead to inferior outcomes. Importantly, the ability to solve
the optimization problem (3.2) makes it practically feasible to explore the whole

decision space.

3-5-2 Moving From Environmental Constraints to Trade-Offs: Scenarios
3to5

This section investigates the insights and benefits that arise from considering
environmental trade-offs rather than imposing environmental constraints. Three
scenarios are considered. The first two, Scenarios 3 and 4, establish the sensitivity of
the system to decisions x;o and x;;, which determine maximum regulated flows in the

Wollondilly River.
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3-5-2-1 Sensitivity to Environmental Flow Constraints — Scenarios 3 and 4

The sensitivity of the system to the specification of environmental flow
constraints is explored using Scenarios 3 and 4. In Scenario 3, x;o and x;; are fixed at
the values recommended by Scott and Grant (1997), while in Scenario 4, x;¢ and x;
are fixed at an arbitrarily large value that would not impose constraint on transfers
from the Shoalhaven. Scenario 3 imposes nominally no environmental stress, while

Scenario 4 would allow imposition of maximal environmental stress.

Figure 3-3 presents the approximate Pareto-optimal solutions for Scenarios 3 and
4. The imposition of the environmental flow constraint on the Wollondilly River
substantially shifts the Pareto front outwards. For example, for a 10% restriction
frequency, the imposition of the Wollondilly environmental flow constraint increases
the present worth cost by ~$1,600 million. The reason for this sensitivity will be
explained subsequently. Here the point to be made is that the imposition of
environmental flow constraints can hide important trade-offs (Suen and Eheart, 2006)
and consequently it may be more helpful to treat environmental needs as a criterion,

albeit poorly defined, to better understand the trade-offs with other criteria.

The solutions presented by the filled symbols in Figure 3-3 are the only solutions
in which the desalination plant has been selected. The steepening of the Pareto front
just before a desalination plant is included in the solution set is attributed to the high
fixed cost of constructing the desalination plant. What is particularly striking about
the filled solutions is the sensitivity of the desalination plant to the Wollondilly
environmental flow constraint. When no constraint is imposed (Scenario 4), the
desalination plant is only selected if solutions produce restriction frequencies of less
than 5%. In contrast, if the constraint is imposed (Scenario 3), a desalination plant is

selected for all solutions with restriction frequencies less than 17%.
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Figure 3-3 Approximate Pareto-optimal front for Scenario 3 (with environmental
flow constraints) and Scenario 4 (without environmental flow constraints). The filled-

in points represent solutions that include a desalination plant

Each solution on the Pareto front in Figure 3-3 corresponds to a particular
decision vector. To gain a better understanding of the sensitivity of the solutions to
the Wollondilly constraint, the relationships between subsets of the approximate
Pareto-optimal decisions for Scenarios 3 and 4 are analysed. Figure 3-4(a) shows the
relationship between decision xs, the desalination plant capacity, and x¢, the
desalination plant trigger, for the solutions that adopt desalination. Regardless of the
desalination plant capacity, the trigger level lies between 0.5 and 0.75 for both
scenarios. However, when there is no constraint on Wollondilly releases (Scenario 4),
the desalination capacity lies in the range 200 to 300 ML/day. In contrast, for
Scenario 3, the capacity ranges from 100 to 500 ML/day suggesting interaction with
other variables. Figure 3-4(b) shows the relationship between decision xg, the base
gain for Warragamba, and xo, its incremental gain. When the Wollondilly flow
constraint is imposed (Scenario 3), all base gains except one, are greater than or very
close to 10,000 and most of the incremental gains are greater than 100. This means
the WATHNETS simulation model assigns the highest preference to keeping water in

Warragamba and thus will seek to supply the Sydney zone from other sources before
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accessing Warragamba. In contrast, when no constraint is imposed (Scenario 4), the
situation is more complex with a negative linear relationship between base and
incremental gain — increasing the base gain by 100 is offset by a reduction in
incremental gain of about 50. This suggests there are complex interactions between
the Warragamba gains and other decisions and, therefore, no simple interpretation can
be made. Figure 3-4(c) displays the relationship between the capacity of Welcome
Reef and restriction frequency. When the Wollondilly flow constraint is imposed,
Welcome Reef has a consistently smaller capacity reflecting the fact that the
Wollondilly constraint limits the utility of storage on the Shoalhaven River.
Figure 3-4(d) shows the relationship between the decision x4, the level-one restriction
trigger, and restriction frequency. There is little difference between Scenarios 3 and 4,
with a lower trigger associated with lower restriction frequencies. Furthermore, in
virtually all cases, decision x5 was at its lower limit of 0.05. This suggests that for the
adopted criteria, the optimal strategy is to impose the severest restrictions as soon as

possible — that said, such a strategy would be unlikely to be socially acceptable.
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Figure 3-4 Comparison of approximate Pareto-optimal decisions for Scenario 3 (with

environmental flow constraints) and Scenario 4 (without environmental flow

constraints): (a) desalination plant capacity (ML/day) versus desalination plant

trigger level; (b) Warragamba base and incremental gain; (c) Welcome Reef

Capacity as a function of restriction frequency, and (d) restriction frequency versus

level-one restriction trigger
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Figure 3-5 displays the relationship between the two pump marks, x; and x», and
the level-one restriction trigger x4 against the restriction frequency for each scenario.
For the scenario with no environmental constraint (Scenario 4), the Warragamba
pump marks associated with the lowest restriction frequency are low because the
presence of the desalination plant reduces the dependence of the system on transfers
from the Shoalhaven. Without the desalination plant, however, the Warragamba
pump mark jumps close to 1 and then declines to about 0.3 as the restriction
frequency increases. With the exception of some interaction with Warragamba pump
marks for restriction frequencies between 10 and 20%, the Avon pump mark largely
lies in the range 0.3 to 0.4. In contrast, Scenario 3 (environmental constraint imposed)
reveals a very different behaviour for the Warragamba pump mark which is mainly in
excess of 0.7. This suggests the Wollondilly flow constraint forces transfers to start
much earlier in the Warragamba drawdown. As a result, there is a higher chance that
Warragamba will spill resulting in a wasted transfer and an overall higher pump cost

than would occur with a lower pump mark.

The comparison of the Scenario 3 and 4 solutions highlights the complexity of
the relationships between decisions. While Figure 3-3 displays a substantial cost
trade-off between Scenarios 3 and 4, the analysis of Figures 3-4 and 3-5 suggests that
it is not straightforward to interpret the difference in solutions. The interactions
between decisions appear to involve, in many cases, more than two variables. This

underscores the importance of conducting optimization using the full decision space.
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3-5-2-2 Three-Objective Case Study — Scenario 5

Scenarios 3 and 4 represent the extremes in terms of environmental stress on the
Wollondilly River and suggest there is a significant trade-off between the
environmental stress and other objectives. For this reason, it is worth exploring the
trade-offs more fully by undertaking an optimization using all three objectives,
namely minimize restriction frequency, minimize present worth cost and minimize

environmental stress on the Wollondilly River — this represents Scenario 5.

Figure 3-6 presents all the approximate Pareto-optimal solutions plotted against
restriction frequency and present worth cost with a color-coded scale for
environmental stress. For a given restriction frequency, reducing the environmental
stress increases the present worth cost. However, what is of greater interest and
practical significance is the variability in trade-offs between present worth cost and
environmental stress as restriction frequency changes. For restriction frequencies less
than 7%, the difference in present worth cost between the best and worst
environmental outcomes ranges between $600 and $700 million. However, between
7% and 18%, the present worth cost difference increases by about a factor of two —
this coincides with the transition to desalination. Beyond restrictions frequencies of

18%, no solution uses desalination and the cost gap rapidly closes.
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Figure 3-6 Approximate Pareto-optimal solutions for Scenario 5 are plotted against
restriction frequency and present worth cost. The color code describes the

environmental stress

3-5-3 The Drought Security Cost Trade-off: Scenarios 6 and 7

So far all the scenarios were based on an expected drought security return period
of 500 years — that is, the approximate Pareto-optimal solutions ensure the system can
cope with droughts having an expected return period up to 500 years without
“running out of water”. In this section, the sensitivity of the approximate Pareto-
optimal solutions to the drought security return period is examined. Two scenarios, 6
and 7, which respectively use 500 and 10,000 year hydro-climate time series are
considered. For both scenarios, restriction frequency and present worth cost are

minimized with no environmental constraint on releases in the Wollondilly River.

As a prelude, one of the approximate Pareto-optimal solutions for the 500-year
scenario was simulated using the 10,000-year input series — this solution had no

desalination and a relatively high restriction frequency of 22%. Figure 3-7(a) shows
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the plot of total storage for the most severe drought in the first 500 years. It is
observed that during this drought, the system ran dry but just avoided unplanned
shortfalls. The fact that the optimized decisions just avoided unplanned shortfalls in
the 500-year scenario would suggest the system becomes vulnerable when exposed to
severer droughts. This is confirmed in Figure 3-7(b) which shows a plot of unplanned
shortfall expressed as a percentage of total demand for the 10,000-year scenario. The
limitations of the 500-year return period solution are abundantly clear. Unplanned
shortfalls of up to 95% of demand, sustained for periods up to 6 months, would most
likely lead to catastrophic outcomes. This vulnerability is unavoidable in systems

totally reliant on climate-dependent sources of water.
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Figure 3-7 Pareto solution from Scenario 6: (a) Time series of total storage during

the most severe drought in the first 500 years; and (b) Time series of unplanned

shortfalls, expressed as a percentage of demand, for 10,000 years
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Figure 3-8 presents the approximate Pareto-optimal fronts for the present worth
cost and restriction frequency criteria for the 500 and 10,000-year scenarios. The shift
in the Pareto front is striking. For a 10% restriction frequency, the present worth cost
increases from $2,600 million to $8,300 million. This large jump in cost arises from
the need to avoid unplanned shortfalls in droughts considerably more severe than
experienced in the 500-year scenario. To better understand the impact of using the
10,000-year scenario, Table 3-5 presents three pairs of solutions on the Pareto fronts
selected so that each pair has a similar restriction frequency. There are four key

differences between the 500- and 10,000-year scenarios:

1. For the 500-year scenario no desalination plant was selected, while in the
10,000-year scenario, all solutions had the desalination plant capacity set

close to the upper limit of 1000 ML/day.

2. The Warragamba pump mark jumps from 30% in the 500-year scenario
to 68% in the 10,000-year scenario to commence transfers from the

Shoalhaven much earlier in any drought.

3. For the 10,000-year scenario, the Warragamba base and incremental
gains ensure that the Warragamba is preferentially drawn down. This
strategy triggers transfers from the Shoalhaven earlier than if all

reservoirs were balanced according to the space rule.

4. All three solutions for the 500-year scenario opt for Welcome Reef close
to its maximum capacity of 1,000,000 ML. In contrast, for the 10,000-
year scenario, the size of Welcome Reef decreases with increasing
restriction frequency because the desalination plant capacity remains

essentially unchanged close its maximum capacity.
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Figure 3-8 Comparison of approximate Pareto frontier for Scenario 6 (500-year

record) and Scenario 7 (10,000-year record)

Table 3-5 Summary of labelled solutions on Pareto fronts in Figure 3-8

Solution 6-1 7-1 6-2 7-2 6-3 7-3
Drought return period, years 500 10,000 500 10,000 500 10,000
2 Restrlctlozl frequency 13 13 29 2 45 45
= (%)
g
0 Present(;vn‘l’)“h cost 2400 8140 1860 7910 1570 7450
Pump mark
0.40 0.65 0.30 0.50 0.30 0.53
Warragamba
Pump mark Avon 0.65 0.31 0.30 0.31 0.30 0.32
Level 1 restriction 0.55 0.56 0.63 0.61 0.82 0.80
trigger
” Trigger increment 0.05 0.05 0.05 0.05 0.05 0.05
c N .
o Desalination plant
2 capacity (ML/day) 0 923 0 980 0 922
A Desalination plant
0 \ 0.52 0.50 0.54
trigger
Welcome Reef 994342 | 970629 | 981469 | 890867 | 873783 | 894823
capacity (ML)
Warragamba base gain 10064 10267 10073 9984 10073 10141
_ Warragamba 104 11 107 24 102 13
incremental gain
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3-6 Discussion

The seven case study scenarios have demonstrated the value of an optimization
methodology that addresses the three shortcomings identified in the previous
literature. The overarching conclusion from the case study is that, in the case of urban
headworks systems, failure to optimize the full mix of operational and infrastructure
decisions, failure to allow for droughts with high return periods and failure to explore

trade-offs implicit in “soft constraints” can produce demonstrably inferior solutions.

The issue of drought security is of paramount importance for cities located in
regions subject to severe prolonged droughts. The prospect of “running out of water”
for an extended period would threaten the very existence of the city and its social and
economic fabric. The case study highlighted the potentially serious shortcomings of
solutions based on short historical or synthetic streamflow records. Very different
approximately optimal solutions were found when securing against an expected 500-
and a 10,000-year drought. For a 10% restriction frequency, the optimal solution for
the 10,000-year record incurred a present worth cost over three times that for the 500-
year record. While the optimal solution for the 500-year scenario just avoided
unplanned shortfalls in the worst drought of the 500-year record, the more severe
droughts in the 10,000 year record resulted in extended and unsustainable periods of
unplanned shortfalls. It is therefore critically important that simulation record lengths,
over which system performance is evaluated, are sufficiently long to match drought
security expectations. It is not an uncommon industry practice to design for the worst
historical drought and then add a reserve [for example, Cloke and Samra (2009)].
Such an approach does not communicate the risk of running out of water, which in
the case of a large urban system could be potentially catastrophic. By rerunning the
optimization problem (3.2) for different record lengths (as done in Scenarios 6 and 7),
the trade-off between drought security and other criteria can be explicitly explored to

enable an informed decision.

The issue of confidence in the drought return period deserves comment. The
Pareto-optimal solutions given by (3.2) secure the system against droughts with
return periods up to an expected value of N years. The actual return period may differ
from the expected value. If one needs more confidence in the return period, the

following pre-conditioning algorithm can be used to reduce uncertainty in the return
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period for the N-year record: Generate M replicates of length N years; rank the
replicates using a suitable low-flow statistic such as the minimum k-year sum; select

the replicate corresponding to the median rank.

Even if drought security is adequately accounted for, failure to optimize the full
mix of infrastructure and operational decisions and explore trade-offs implicit in
“soft” constraints can result in solutions that involve far greater economic cost than is
necessary. The issue of soft constraints can be particularly challenging. To transform
an environmental constraint into an objective requires the formulation of an
environmental response function that maps decisions into a meaningful metric of
environmental response. It is widely accepted that this is a difficult task constrained
by limited data and difficulties in identifying causal mechanisms. It is acknowledged
that the environmental stress function given by (3.7) is subjective and most likely
incomplete. Accordingly, the main insight is not quantitative but an awareness that
there are very significant trade-offs between environmental response and cost and that
these trade-offs are a non-linear function of restriction frequency. In view of this, a
strong case could be made to invest in studies to better inform the specification of the
environmental response function and so better inform the trade-off process. Seen
from this perspective, the optimization methodology advanced in this study is part of

an iterative process involving progressive refinement of information and objectives.

3-7 Conclusions

This chapter has formulated and demonstrated a multi-objective optimization
methodology for urban water supply headworks planning and management that
produces solutions with demonstrably greater practical value. Its principal
contribution is the identification of three practically significant shortcomings in the
literature and a methodology to resolve these shortcomings. The case study,
motivated by the headworks system for Sydney, Australia, demonstrated the
significant manner in which these shortcomings can compromise the practical value

of so-called Pareto-optimal solutions.

Urban headworks systems are typically planned and operated in a manner that
ensures a very low risk of “running out of water” or catastrophic water shortages. The

case study demonstrates the very considerable sensitivity of Pareto-optimal solutions
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to the return period of the worst drought. While this may seem self-evident, the
literature has largely ignored this issue and repeatedly published optimal solutions
conditioned on historical records or short stochastic records. Where high levels of
drought security are required, such solutions are flawed and methodologies that
produce such solutions should be avoided. Our approach addresses drought security
explicitly. It identifies near-optimal solutions that are constrained so that the system
does not “run dry” in severe droughts with expected return periods up to a specified

value.

In many cases, the operating rules that control the operation of the headworks
system are conditioned on the system infrastructure. It is therefore vital in
optimization studies, in which new system infrastructure is to be added or existing
infrastructure modified, that key operating rules are optimized jointly with the
infrastructure options. While this may substantially increase the dimension of the
decision space, it is not worth the risk of obtaining significantly inferior solutions. In
a similar vein, the imposition of “soft” constraints, such as the environmental flow
constraints in the case study, runs the risk of missing potentially good solutions. In
the case of constraints to which system performance is sensitive, their reformulation
as objectives within a multi-objective optimization framework can enable a more
thorough and computationally efficient assessment of trade-offs, an outcome that

would be difficult to achieve using conventional sensitivity analysis.

It is important that “good” solutions be found for the “right” problem. This study
has made a significant contribution towards this goal by addressing identifiable
shortcomings. However, in practice, planners have to deal with scenario uncertainty
in which assumptions have to be made about model structure and exogenous factors
such as system forcing and political and social constraints. There can be a
considerable and difficult-to-quantify uncertainty about these scenarios. In such
cases, one can argue that “good” solutions need to produce good outcomes across the
range of plausible scenarios — in other words, “good” solutions need to be robust
(Matalas and Fiering, 1977). There is a growing literature on robust optimization [see,
for example, Deb and Gupta (2006)] whose concepts can be applied to the urban

headworks problem.
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In this chapter, a steady-state scenario was considered in which demand was
assumed to be constant over the simulation interval. However, in the face of growth
in urban populations and accompanying growth in demand for water, optimizing
decision for a steady-state scenario is insufficient. While it may identify “good”
solutions for a particular population, it provides no information on how to best
schedule future infrastructure investments and future changes in operating rules to

cope with the growing demand. This is the topic of the next chapter.




Chapter 4
Application of Multi-Objective
Optimization to Scheduling
Capacity Expansion of Urban

Water Resource Systems



Chapter 4 71

4-1 Introduction

With the worldwide trend of significant population growth in major cities, it is
expected that most urban water resource systems will face a growing demand for
water in addition to future climate change and changing expectations about level of
service and acceptable impacts on environmental systems. In the face of such change,
the performance of the water resource system is expected to change, most likely for
the worse, resulting in the need to change the mix of infrastructure and operating
rules. This chapter considers the scheduling capacity expansion problem from a
multi-objective perspective. It generalizes the ideas developed in Chapter 3 to
consider the question of when as well as how much should the infrastructure and

operating rules be changed to serve the changing needs of a city.

Capacity expansion involves the provision of additional yield by increasing the
capacity of existing infrastructure and the construction of new infrastructure
harvesting new sources of water. In its simplest manifestation, capacity expansion
deals with sizing reservoirs. For example, Khaliquzzaman and Subhash (1997)
developed a model for sizing multiple reservoirs. Mousavi and Ramamurthy (2000)
proposed an optimization method to determine the optimal multi-reservoir system
design for water supply by converting two objectives, minimum cost and minimum
water deficit, to a single objective function. Nainis and Haimes (1975) applied a
multilevel approach for capacity expansion in water resource systems; they extended
classical benefit-cost analysis, describing their approach as dynamic benefit-cost
analysis. Yang et al. (2007) applied the concept of multi-objective optimization to
reservoir capacity expansion trading off two objectives, minimizing capital costs and

minimizing costs arising from water shortages.

Other studies have extended the concept of capacity expansion to include options
other than those dealing with sizing reservoirs. For instance, Nakashima et al. (1986)
developed a two-phase heuristic optimization technique to determine a water supply
system layout and to size water production and transmission facilities. Hsu et al.
(2008) developed a methodology to detect potential bottlenecks of a water
distribution system with the aim of facilitating capacity expansion plans.
Dziegielewski et al. (1992) incorporated drought management plans into their

capacity expansion analysis; they assessed the trade-off between long-term and short-
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term options to manage drought by estimating the expected cost of coping with
drought. Basagaoglu and Yazicigil (1994) considered capacity expansion in the

context of a groundwater system.

All the aforementioned studies have focused on decisions at the start of the
planning period. However, decisions to expand capacity can be implemented at
different points of time over the planning period to take advantage of delaying a
portion of investment outlays. Although the construction of large infrastructure at the
start of the planning period exploits the economies of scale, the time discounting of
costs and the dynamics of growth may nonetheless favour smaller projects staged
over the planning period. To analyse this trade-off a number of studies have
considered scheduling expansion (Grossman and Marks, 1977; Knudsen and
Rosbjerg, 1977; Braga et al., 1985; Kim and Yeh, 1986; Lund, 1987; Watkins Jr and
McKinney, 1998; Gillig et al., 2001; Voivontas et al., 2003; Mahmoud, 2006; Chang
et al., 2009)

Scheduling expansion problems have typically been formulated to find the
timing of predefined projects that minimizes the total present worth cost (PWC).
Indeed, given this perspective, the main aim is to find the best sequence of projects
(Luss, 1982). However, projects often can be implemented at different scales. Thus,
the scheduling capacity problem can be generalized to find the optimum timing and
scale of predefined projects — this is referred to as the scheduling capacity expansion

problem.

Figure 4-1 illustrates the scheduling capacity expansion process. It plots demand
and yield as a function of time. Given the initial yield of the system is Y, the system
can meet demand up to time 7. At time 7, a decision is made to add extra yield AY;.
As a result, system yield will exceed demand until time 7. In a similar manner,
decisions are taken at later times to provide additional yield. Thus 7}, 7> and so on
represent change points at which decisions are made. The period between two

consecutive change points is called a planning stage.
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Figure 4-1 Schematic of scheduling capacity expansion over a planning horizon

A number of studies have investigated the scheduling capacity expansion
problem in a water resources context. Knudsen and Rosbjerg (1977) developed a
general dynamic programming algorithm to find the optimal scheduling of water
supply projects. Kim and Yeh (1986) introduced a heuristic solution procedure to find
an optimal sequence of capacity expansion projects. Connarty and Dandy (1996) used
genetic algorithm optimization to find the optimum sequence involving nine
reservoirs for a case study based on the southeast Queensland headworks system.
Watkins Jr and McKinney (1998) developed a model involving capacity expansion of
an integrated surface and groundwater system. In a similar way, Chang et al. (2009)
applied an optimization model to determine the capacity expansion schedule for
groundwater supply. They considered a variety of expansion options involving
surface and groundwater sources such as increasing borehole, reservoir and
desalination plant capacity. Mahmoud (2006) employed a high dimension dynamic
programming model to determine the optimal expansion schedule of a desalination
plant. In all these studies solely infrastructure options were considered as decisions.

The interaction between infrastructure and operating rule options was not considered.
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The high capital costs and environmental impacts associated with expanding or
building new major urban water infrastructure warrant the investigation of scheduling
system operating rules such as reservoir operating rules, demand reduction policies
and drought contingency plans, as a way of delaying or avoiding the expansion of
water supply infrastructure (Lund, 1987; Rosenberg et al., 2008). Lund (1987)
incorporated conservation rules into the scheduling capacity expansion problem. He
demonstrated the benefit of using conservation rules to defer water treatment plant
expansion. In Lund’s study the present worth of conservation cost and capacity
expansion cost was minimized to find the optimum time to add new capacity to the
system. However, a drawback of this approach is that discounting conservation costs
can lead to higher levels of demand reduction in the future than in the present. This

raises a socially-sensitive equity issue.

Decision makers usually set the level and frequency of demand restrictions based
on a level of service acceptable to the community. To identify what is acceptable, it is
important to identify the trade-off between conservation (or restriction) and
infrastructure costs. Rubinstein and Ortolano (1984) applied a dynamic programming
algorithm to demonstrate the trade-off between the present value of the cost of
implementing projects and the expected value of the costs to cope with emergencies,
i.e. imposing restrictions. Although the coping cost in emergency situations is
separated from project capital cost, the fact that the coping cost is a discounted cost

suggests that severer restrictions may be deferred to future planning stages.
All the reviewed studies suffer from one or more significant shortcomings:

1. Most of the studies considered only a single objective. The drawback of using a
single objective is that it is not possible to identify the trade-off between capital
and operating costs and the cost of restrictions. However, the main drawback is
that discounting restriction costs can lead to higher levels of demand reduction in
the future than in the present. The optimization process hides a socially-sensitive

equity.

2. The studies optimized either decisions involving infrastructure alone or when
operational decisions were included, they were not jointly optimized with

infrastructure decisions. As shown in Chapter 3, changing the infrastructure
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within a system without concomitant changes to operating rules can result in

significantly inferior outcomes.

3. All the studies failed to address drought security adequately primarily because
insufficient streamflow data was used to sample severe droughts. As this issue

was treated extensively in Chapter 3, it was not explicitly reviewed here.

This chapter presents the application of a multi-objective optimization approach
to scheduling capacity expansion in an urban water resource system that addresses the
shortcomings identified in previous studies. The chapter is organized as follows:
First, a new formulation of the multi-objective scheduling capacity expansion
problem is presented. Using a case study based on the Canberra headworks system,
twelve scenarios are investigated to demonstrate the significance of the identified

shortcomings and how the proposed approach deals with them.

4-2 The Multi-Objective Scheduling Capacity Expansion

Problem

This section presents a general formulation of the scheduling capacity expansion
problem that addresses the shortcomings identified in previous applications. This
involves generalizing the formulation presented in Section 3-3 to incorporate the
staging of decisions and to allow for the stochastic nature of future inputs to the
system. The section concludes with a review of optimization methods with the goal of

identifying algorithms suited to the scheduling problem under consideration.

4-2-1 Formulation

Suppose the planning period of 7T years is subdivided into M planning stages with
the i stage commencing at time 7}. To account for climate variability and other
stochastic inputs, the inputs are replicated N times over the planning period by
sampling from a suitably constructed probability model of the inputs. For each

replicate 7, g, is a vector of streamflow and climate values at multiple sites for year ¢,

and d,. is a vector of unrestricted demand at multiple sites for year 7. The notation Q|

denotes the time series of vectors {g,,t=u,...,v}.

Let x, ={x/,..,x?} denote a p-vector of decision variables that are implemented

at the start of the /" planning stage. The decision vector can represent a mix of
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infrastructure options and operating rules. A solution is defined as a sequence of

decision vectors over M planning stages x = {x,,..., X/}

The simulation model produces N replicates of response denoted by
Z,.=M[x,0/,,D/,1,r=1,.,N where O/, and D/, represent the streamflow and

demand for the ™ replicate of the T-year planning period. The performance of the

system is evaluated using K objective function

T T N
O W OLTICHERI RS WO WACHEMN SIS )
1= t= r= 4.1

where x, ={x,...x;: T, <t<T;,} is the sequence of projects or decision vectors
implemented on or before year ¢ and ¢(¢) is a temporal discounting factor. The term
E [ f,.(let(xlzt))] is the expected value of the i objective function for year ¢ and is

evaluated by averaging over the N replicates — the notation emphasizes the fact that
the objective function value depends on the response from the simulation model

which in turn depends on the decision values.

The multi-objective optimization problem for the scheduling capacity expansion
problem involves minimizing the K objective function over the decision space subject
to constraints that include constraints on staging decisions, which are discussed
further in Section4-3-3. This formulation addresses the shortcomings identified in

previous applications in the following ways:

1. The use of multiple replicates of forcing data ensures that drought security can be
adequately addressed. In Chapter 3, the issue of drought security was addressed
by choosing an input record with sufficient length to ensure the system could cope
with droughts up to a specified return period. In the case of scheduling this
approach cannot be used because the planning period 7 is fixed and because the
performance of the system changes over time. The use of multiple replicates of
forcing data provides a solution to this problem. By selecting the appropriate
number of replicates V, one can ensure the system will encounter droughts of

appropriate severity.
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2. The use of multiple replicates of forcing data ensures that the Pareto-optimal
solutions are not dependent on any particular sequence of future climate and
demand. This allows the use of a simulation model that can respond to changes in
both infrastructure and operating rules. In turn, this enables both operating rules
and infrastructure investments to be jointly optimized. The findings of Chapter 3

suggest that such capability is likely to produce significant benefits.

3. The potential equity issue arising from temporal discounting of costs can be
addressed in a multi-objective context by exploring the trade-offs between

economic and equity criteria.

In the following sections, the benefits of this formulation will be investigated

using a case study.

4-2-2 Optimization Methods

The section briefly reviews the optimization methods that have been employed in
capacity expansion problems and identifies those best suited for solving the problem
described in Section 4-2-1. A review of the literature shows that a variety of

optimization methods have been used in capacity expansion problems.

Approaches using some form of linear programming include Khaliquzzaman and
Subhash (1997) who used network linear programming for sizing of reservoirs in a
water resource system and Mousavi and Ramamurthy (2000) who integrated an
optimal control theory approach with successive linear programming to determine the
reservoir sizing. However, many capacity expansion problems are not amenable to
linear programming approaches because of nonlinearities in objective functions and
constraints. As a result, a number of studies have used nonlinear optimization
methods. For instance, O'Laoghaire and Himmelblau (1974) applied the branch and
bound method. Basagaoglu and Yazicigil (1994) developed three mixed-integer
programming models to eliminate nonlinearity in the objective function. Watkins Jr
and McKinney (1998) investigated application of two decomposition methods,
namely generalized decomposition Benders and outer approximation, to solve
problems involving cost functions with both discrete and nonlinear terms. Rosenberg
et al. (2008) developed stochastic nonlinear programming to identify the benefit-

maximizing options involving conservation and leak reduction programs,
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infrastructure expansions, and operational allocations under stochastic water

availability.

Dynamic programming (DP) (Bellman, 1957) has been used in the sizing and
sequencing water resources projects (Butcher et al., 1969; Morin and Esogbue, 1971;
Erlenkotter, 1973; Morin, 1973; Erlenkotter and Trippi, 1976; Grossman and Marks,
1977; Knudsen and Rosbjerg, 1977). In a more recent study, Kim and Yeh (1986)
presented a heuristic solution procedure that incorporates a shortest path DP method
and a cyclic coordinate univariate direct search procedure. The main drawback of DP
is that it can only be used for a relatively small number of projects because the
number of possible states grows exponentially with the number of projects (Luss,
1982). This so-called curse of dimensionality limits the application of DP (Hsu et al.,
2008). A variety of methods has been developed to overcome the curse of
dimensionality. Some of these methods have been applied in capacity expansion
problems. For instance, Mahmoud (2006) applied objective space dynamic
programming (OSDP) in conjunction with mixed integer programming. OSDP is a
variant of dynamic programming based on the use of the objective value function as

the “state” variable to overcome the “curse of dimensionality” problem.

Evolutionary methods such as genetic algorithms (GAs) do not suffer from the
curse of dimensionality or issues related to handling nonlinear equations. Dandy et al.
(1985) applied a GA to a water supply system to find optimum water price and
project sequences. In a similar way, Chang et al. (2009) hybridized a GA and
constrained differential dynamic programming (CDDP) to optimize capacity
expansion schedules for groundwater supply. They used GA to investigate capacity
expansion alternatives and then applied the CDDP algorithm to compute the optimal
pumping policy associated with the selected expansion options. It is worth noting that
this hierarchical optimization approach is likely to produce a sub-optimal solution

because the pumping policy and capacity expansion were not jointly optimized.

All of the above-mentioned studies have dealt only with a single objective.
Rubinstein and Ortolano (1984) used DP in multi-objective capacity expansion.
Because DP cannot optimize two objectives jointly, they weighted the multiple
objectives to form a single objective. Yang et al. (2007) used a hierarchical approach

to integrate a multi-objective genetic algorithm (MOGA) with CDDP; MOGA was
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used to generate various combinations of reservoir capacity and CDDP was used to
distribute optimal releases among reservoirs to satisfy water demand to the extent

possible.

Of the general approaches reviewed, those based on evolutionary methods
appear best suited for the multi-objective problem described in the previous section.
As discussed in Chapter 2, they can interface with complex non-linear simulation
models, and handle multiple non-linear objectives and constraints. In view of the
satisfactory performance of eMOEA in Chapter 3, it was decided to use eMOEA to
solve the multi-objective scheduling capacity expansion problem associated with the
case study presented in the remaining sections of this chapter. As in the case of the
previous chapter, the main contribution in this chapter is with the improved problem

formulation rather than the use of any particular optimization method.

4-3 Case Study: Description and Problem Formulation

This section introduces the case study for this chapter. It considers the water
supply headworks system for Canberra, Australia’s capital city. An overview of the
Canberra system is presented followed by a detailed formulation of the multi-

objective scheduling capacity expansion problem.

4-3-1 Description of Canberra System

The Canberra headworks system serves a current population of approximately
420,000. Figure 4-2 presents a schematic of the headworks system. Water is
harvested from two catchments, Cotter and Googong, which flank the city to the west
and east respectively. A network of pipelines, pumping stations and treatment plants
connects four reservoirs to the Canberra demand zone. Releases from the reservoirs
have to meet, not only the consumptive needs of the Canberra urban area, but also

environmental flow requirements defined in the water authority’s operating license.
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Figure 4-2 Schematic of Canberra headworks system (Adapted from
http://www.actew.com.au/Water%20and%20Sewerage%20Systems/Water%20Supply
%208ystem/ACT%20Water%20Supply%20Map.aspx, last visit 16/05/2012)

A WATHNETS model of the Canberra system was constructed. Figure 4-3
presents the WATHNETS schematic with the red nodes representing reservoirs, blue
stream nodes, yellow demand zones, and black waste/sink nodes. The network of
reservoirs, pumping stations and water treatment plants supplies water to the demand
zone labelled “Canberra”. The existing system includes four reservoirs, Corin,
Bendora, Cotter and Googong. The reservoirs have a total storage capacity of 206,732
ML. Googong Reservoir is the largest reservoir in the system with a capacity of
121,084 ML. There are two water treatment plants, Googong and Stromlo WTP,

serving the Canberra population.

In this case study, a hypothetical population scenario corresponding to a highly
stressed system is presented. The base population is 175% of the current population
and is assumed to grow at 1.2% per annum over the 30-year planning period. For
simplicity, the same demand time series was used in all replicates; it is noted that this

arrangement ignores the correlation between demand and climate and thus may
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underestimate the consequences of drought. Figure 4-4 presents the 30-year demand
time series with and without population growth. What is evident is the high
seasonality of water consumption with outdoor water usage during the hot, dry
summer months more than doubling unrestricted consumption. Superimposed on this
seasonality in consumption is a 43% increase in demand over the 30-year planning
period. Multiple replicates of monthly future streamflow data from 2010 to 2040 were
sampled from a stochastic model calibrated to an historical record from 1871 to 2009

— the stochastic model was the same as used in the Sydney case study in Chapter 3.

To cater for this increase in demand, three options are available for augmenting
supply — these are highlighted in the WATHNETS schematic by dashed ovals. The
first is to increase the capacity of Cotter Reservoir by up to 100,000 ML. The second
is to build a new pump station to divert up to 6,000 ML/month from the
Murrumbidgee River into Googong Reservoir. The third option is to install domestic

rainwater tanks in up to 15,000 houses.
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Figure 4-3 WATHNETS schematic of Canberra headworks system
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Figure 4-4 Comparison of Canberra unrestricted demand time series with and

without growth

The high seasonality in water consumption due to summer outdoor water use
indicates there is considerable scope for reducing demand by imposing restrictions on
outdoor water use. In this study, four levels of restrictions are available with

Table 4-1 presenting the ratio of restricted to unrestricted demand for each level.

Table 4-1 Demand fractions for each restriction level

Restriction level Ratio of restricted to unrestricted demand
1 0.95
2 0.80
3 0.70
4 0.65

4-3-2 Decision Variables

The 30-year planning horizon, 2010 to 2040, was divided into three equal-length
planning stages with change points occurring in 2010, 2020 and 2030. Six decisions
associated with operational and capacity expansion options are considered at each

change point. These decisions and their lower and upper limits are presented in

Table 4-2.




Chapter 4 83

Three decisions involve capacity expansion, namely Cotter Reservoir capacity,
Murrumbidgee diversion capacity and the number of installed domestic rainwater
tanks. The Murrumbidgee pump storage trigger controls the pumping of water from
the Murrumbidgee River to Googong Reservoir after the Murrumbidgee diversion
pump station is commissioned; when the storage fraction in Googong Reservoir level
falls below the trigger level, pumping from the Murrumbidgee River up to the
maximum capacity of the pump station is initiated. The level-one restriction trigger x°
and increment x° are operational decisions that regulate the occurrence of restrictions
on consumption during a drought drawdown. If the total storage fraction falls below
x” then the first restriction level is imposed. If the total storage fraction falls below x’

+x7, then the second level of restrictions is imposed and so on.

Table 4-2 List of decision variables

Decision Description Ii(i)nvriir 1'1]111)111) ietr Category
1 Cotter capacity upgrade(ML) 0 100,000 Zero-one capacity
expansion
) Level-one restriction storage 0 | Operational
trigger
3 Restnctl.on storage trigger 0.05 025 Operational
increment
4 Murrumbidgee diversion 0 6.000 “Zero-one” capacity
(ML/month) ’ expansion
5 Murrumbldgfae pump storage 0 1 Operational
trigger
6 Number of houses with tanks 0 15,000 Developing _capacity
expansion

4-3-3 Constraints

A scheduling expansion problem is typically constrained. For example, decisions
may belong to the “zero-one” category. If a non-zero value is assigned at a planning
stage, then that value remains unchanged for all remaining planning stages. For
example, if the capacity of Cotter is increased by 50,000 ML at the start of stage 2,
then it will remain unchanged for the remainder of the planning period. Another
decision category imposing a constraint is the “developing” category. In this case, the
decision value cannot decrease at subsequent planning stages. For example, the
number of installed domestic rainwater tanks can be increased but not decreased at

each planning stage. The following equation formalizes these constraints:
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x,, = x'if x' >0andx' € "zero-one"decisions

x,, > x if x' € "developing"decisions (4.2)

t+1 —

where x| is the i" decision at planning stage ¢.

4-3-4 Objective Functions

All reviewed studies dealing with capacity expansion have sought to minimize
the present worth of capital, operating and other economic costs. In the context of the
formulation described in Section 4-2-1, the total present worth cost can be expressed

as

fx)=— Z(l : )Zc%xl,)wR (0,)+ U’ (x,) 43)

where 1, is the discount rate and C/ (x,,) is the cost of infrastructure investments and
operating costs for year ¢ and replicate », CR/(x,,) is the economic cost of imposing

restrictions on demand and U/ (x,,) is the cost of unplanned demand shortfalls.

However, exclusive reliance on this objective can hide the trade-off between capital
and operating costs and the social costs arising from restrictions and unplanned

shortfalls.
To explore this trade-off, two multi-objective formulations are considered:

1. Two-objective trade-off

The total present worth cost can be decomposed into its constituent costs to
enable exploration of the trade-off between capital, operating and unplanned
shortfall costs and costs due to restrictions. This yields the following two

objective functions:

T

mlnfl(x) = Z (1 e

Zcr(xlt)-i_U’ (xlt) (44)

mlnfz(x) = z

2 (1 ZC "(x,,) (4.5)
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The second objective minimizes the discounted cost of imposing restrictions.
However, minimizing discounted restriction costs can produce undesirable social
outcome. Due to discounting, the same frequency and severity of restrictions in
the future will be being costed less than if the same were to occur in the present.
As a result, minimization of discounted restriction costs can lead to a higher
frequency and severity of restrictions in the future, a situation which often would

be deemed politically unacceptable on social equity grounds.

2. Three-objective trade-off

One way to overcome this practically significant shortcoming is to avoid
discounting restriction costs. However, this in itself will not assure equity (or
equal sharing of the burden of restrictions) over planning stages. To achieve this
it is necessary to introduce a third objective which seeks to minimize the
difference in undiscounted restriction costs over the planning stages. These

considerations lead to the following three objective functions:

T

min ()= (1 ZC’<xl,)+U'(x”) (4.6)
min £, (x) = — Z ii CR (%) 4.7)

2

. 1 &1 &Ldw
min f,(x) =, |— Z CR (x,) = fr(x)
¥ M T\ N=T 2

(4.8)
The first objective seeks to minimize the present worth of capital, operating and
unplanned shortfall costs. The second minimizes the expected cost of
undiscounted restrictions in a planning stage. The third minimizes the standard
deviation of undiscounted restriction costs between planning stages. This

effectively seeks to ensure the burden of restrictions on the community is shared

as fairly as is possible across all planning stages.

The capital cost of the infrastructure options is summarized in Table 4-3. These
costs are indicative and therefore should not be taken literally. Two capital items

involve a binary choice: if the item is selected by the optimizer, then there is a fixed
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setup cost along with a unit cost; if the item is not selected, there is zero capital cost.
Operating costs include pumping and treatment costs for transfers from Cotter
Reservoir ($250/ML), from the Murrumbidgee River ($285/ML), from Bendora
Reservoir ($84/ML) to Stromlo water treatment plant, from the Murrumbidgee River
to Googong Reservoir ($23/ML), and from Stromlo water treatment plant to Googong
Reservoir ($36/ML). The unplanned shortfall cost was set to $1.0x10°/ML to ensure

the optimizer steered away from solutions that resulted in “running out of water”.

Table 4-3 Infrastructure cost of capacity expansion decisions for Canberra water

headworks system

Decision Variable Unit Cost
Cotter Reservoir capacity upgrade $50x10°+ $1923/ML
Murrumbidgee diversion $20 x10°+ $42623/ML
Water tanks $3000/ house

As a postscript to this section, a brief comment is made on how the economic
cost of restrictions is estimated in this case study. Recognizing that restrictions in
Australian urban areas are mainly targeted at outdoor water use (which in the case of
Canberra is substantial; see Figure 4-4), the method developed by Dandy (1992) was
adopted. Dandy assumed that:

1. All the households have the same price elasticity of demand for outdoor

use

it.  The price elasticity for outdoor use is constant within the range

considered.

iii.  All households reduce their outdoor consumption in the same proportion

in response to water restrictions.

Using a willingness-to-pay analysis, he showed that the economic cost of

restrictions in a drought event could be approximated by

1+¢
CR=—2"PO[1-(1-R) * |
I+e (4.9)
where CR is the economic cost due to imposition of restrictions, P is the current price

of water, Q is the unrestricted outdoor consumption, R is the fraction by which
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consumption is reduced and ¢ is the price elasticity of demand for outdoor water. In
this study, following Cui (2003), € and P were set equal to -0.25 and $600/kL

respectively.

4-4 Case Study Scenarios and Results

The section presents the main findings of the case study. Twelve scenarios are
described with the intent of demonstrating in a structured manner the limitations of
earlier applications and the performance of the formulation described in Section 4-2-

1. The section then reports and discusses the results of each scenario.

4-4-1 Description of Scenarios

Table 4-4 summarizes 12 scenarios used to demonstrate the benefits of applying
the multi-objective formulation of Section 4-2-1 to scheduling capacity expansion
problems. The scenarios differ in the number of objectives, the demand growth rate,
staging of infrastructure and operational decisions, the discount rate and the initial
volume of the reservoirs. The first two scenarios are used to demonstrate the need for
capacity expansion in the presence of demand growth. The next four scenarios,
Scenarios 3 to 6, are used to demonstrate the benefit of scheduling operational
decisions in addition to infrastructure decisions. The next three scenarios, Scenarios 7
to 9, investigate the sensitivity of results to choice of discount rate. Unlike the first 8
scenarios which minimize present worth cost, the remaining scenarios, Scenarios 10
to 12, use multiple objectives to demonstrate the advantages arising from of using
multi-objective optimization particularly with regard to trading off equity against
economic efficiency. Finally, the sensitivity of initial conditions is investigated. In all
scenarios except Scenario 12, reservoirs are assumed to be full at the start of the first
planning stage. In Scenario 12, the initial storage in the reservoirs is set to the historic

25™ percentile volume.

For each scenario, the simulations were conducted using 50 replicates of
stochastically generated streamflow. It is acknowledged that more replicates would be
needed to ensure a high level of drought security. However, as this issue was already
addressed in Chapter 3, a reduced number of replicates was adopted to make the
computation manageable for the twelve scenarios. Because eMOEA is a probabilistic

method, it is unable to guarantee convergence to the Pareto front. Accordingly, to




Chapter 4 88

reduce the chance of premature convergence affecting the results, each scenario was
optimized 10 times with different random number seeds. The results presented in the
subsequent sections are the best out of 10 runs. As in the Chapter 3 case study, the
eMOEA parameters were: probability of crossover = 1, probability of mutation = 0.01
and probability of inversion = 0.005. The maximum number of iterations for the
single objective scenarios, 1 to 9, was set equal to 10,000, while for the multiple-
objective scenarios, 10 to 12, it was set to 30,000. The eMOEA epsilon was set to
100,000 for the single objective cases and to 10,000 for the first objective and 1000

for the second and third objectives in the multi-objective optimization.




Table 4-4 List of scenarios

Timing of decision

Scenario Nurnbgr of Growth _ Discount | Initial reservoir Purpose
objectives rate Infrastructural | Operational rate volume
1 1 0 N/A Any stage 5% Full
2 1 12% N/A Any stage 5% Full Impact of demand growth
3 1 1.2% Stage 1 Stage 1 5% Full
4 1 1.2% Stage 1 Any stage 5% Full Consequence of different timing of
5 1 1.2% Any stage Stage 1 5% Full infrastructural and operational decisions
6 1 1.2% Any stage Any stage 5% Full
7 1 1.2% Any stage Any stage 1% Full
8 1 1.2% Any stage Any stage 5% Full Sensitivity to choice of discount rate
9 1 1.2% Any stage Any stage 10% Full
10 2 1.2% Any stage Any stage 5% Full Use multiple objectives to deal with equity
11 3 1.2% Any stage Any stage 5% Full issues
12 3 1.2% Any stage Any stage 5% 25™_percentile Sensitivity to initial reservoir volumes
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4-4-2 Scenarios 1 and 2: Impact of Demand Growth

Scenarios 1 and 2 are used to justify the need for capacity expansion in the
Canberra case study. Scenario 1 has the annual demand growth rate set to zero, while
Scenario 2 has the rate set to 1.2%. In both scenarios, no capacity expansion is
allowed; only operational decisions namely level one restriction trigger and trigger

increment can be changed at each planning stage.

Figure 4-5 shows the demand, unplanned shortfalls and restricted demand time
series for the first replicate of Scenario 1 using the optimized decisions. Unplanned
shortfalls occur when the demand, permitted by the DCP, cannot be supplied — such
shortfalls typically would occur when reservoirs run dry or when limitations in
transfer capacity result in demand zones being supplied less than the minimum
permitted by the DCP. Restricted demand represents amount of water supplied to the
demand node after restrictions imposed. Because there is no demand growth, the
system could avoid unplanned shortfalls by imposing frequent restrictions. However,
in the presence of demand growth in Scenario 2, Figure 4-6 shows that unplanned
shortfalls could not be avoided even though severe and frequent restrictions were
imposed. This highlights the need to augment the capacity of the system to cater for
the demand growth, as optimizing operational decisions alone cannot prevent the
occurrence of unplanned shortfalls. Table 4-5 presents the total present worth cost
and associated decisions for the two scenarios. Because unplanned shortfalls attract a
punitive cost, the total present worth cost for Scenario 2 is an order of magnitude
higher than for Scenario 1. The decisions controlling the imposition of restrictions are
at or close to their most severe values for Scenario 2. When the level-one trigger is
1.0 and trigger increment is 0.05, the highest frequency and maximum severity of
restrictions are imposed on the system. It is noted that the restriction decisions in
Scenario 2 did not assume the most severe values in the third stage. This is because
shortfalls were unavoidable even when the restriction decisions were set at their most
severe values. Figure 4-7 shows the total storage time series for the first replicate of
Scenario 2. There are two periods during which the system was empty and,
consequently, unplanned shortfalls occurred. These shortfalls occurred even if the

stage-three level-one trigger was 1.00 and the trigger increment was 0.05.
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Figure 4-5 Demand, unplanned shortfalls and restricted demand for the first

replicate of Scenario 1
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Figure 4-7 Time series of total storage for the first replicate of Scenario 2

Table 4-5 Comparison of present worth cost and decisions for Scenarios 1 and 2

Total Planning stage 1 Planning stage 2 Planning stage 3
present
Scenario worth Level-one Tricoer Level-one Tricoer Level-one Tricoer
Cf)s_t restriction | . g8 ¢ restriction | . g8 ¢ restriction | . g8 ¢
($million) rigger incremen rigger incremen rigger incremen
1 362 0.949 0.221 0.933 0.180 0.8 0.248
2 3690 1.000 0.0524 1.000 0.0516 0.827 0.0892
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4-4-3 Scenarios 3 to 6: Impact of Different Timing of Infrastructure and

Operational Decisions

Four scenarios are used to investigate the relative impacts of scheduling
infrastructure (or capital) and operational (or operating rule) decisions over the
planning period. These scenarios differ in the timing of their infrastructure and
operational decisions. In Scenario 3, all decisions are made at start of the first
planning stage. In Scenario 4, all infrastructure decisions are made at start of the first
planning stage, while operational decisions are flexible in the sense they can be
changed at any of the planning stages. In contrast, in Scenario 5 all operational
decisions are made at start of the first planning stage, while infrastructure decisions
are flexible. Finally, in Scenario 6, all decisions can be made at any planning stage

subject to constraints on the infrastructure decisions.

Table 4-6 and 4-7 present respectively the costs and decisions for the four
scenarios. To provide a better understanding of how these scenarios deal with
restrictions, the undiscounted restriction cost is presented for each planning stage in
Table 4-6. Scenario 5 has effectively the same total PWC as Scenario 3. One would
expect Scenario 5 to produce a smaller total PWC than Scenario 3; the fact that
Scenario 5 produced a marginally higher cost reflects premature convergence by the
optimization algorithm. Bearing this in mind, the near equal costs for Scenarios 3 and
5 suggests that for the Canberra system, scheduling infrastructure decisions while
fixing operational decisions offers no significant benefit over making all decisions at
the start of the planning horizon. Scenario 5 has the highest restriction cost of the four
scenarios indicating a heavy reliance on imposing restrictions. The level-one
restriction trigger of 0.815 and the trigger increment of 0.144 confirm the selection of
a severe restriction policy. Of interest is the finding that the Cotter upgrade was not

selected and the Murrumbidgee diversion was delayed to stage two.




Table 4-6 Results for Scenarios 3 to 6

Scenario Total Capital and Total present Undiscounted restriction cost Average of Standard deviation
present operational worth cost of ($million) undiscounted of undiscounted
worth present worth restrictions Stage 1 | Stage2 | Stage3 restriction cost over restriction costs
cost cost ($million) ($million) three stages over three stages
($million) ($million) ($million)
3 462 393 69 0.060 50.6 99.7 57.3 54.1
4 445 391 54 0 59.4 89.6 49.6 50.5
5 464 362 102 64.94 553 94.3 71.5 47.9
6 444 396 48 0.056 34.4 53.2 359 36.9

Table 4-7 Optimum decisions for Scenarios 3 to 6

Scenario 3 Scenario 4 Scenario 5 Scenario 6
Planning stage Planning stage Planning stage Planning stage
Decisions One Two Three One Two Three One Two Three One Two | Three
Cotter capacit S Same as Same as Same as
pactty 0 stage 0 stage 0 0 0 0 0 0
upgrade(ML) stage one stage one
one one
Level-one Same as Same as Same as Same as
restriction storage 0.77 stage 0.019 0.831 0.627 0.815 stage 04 0.627 | 0.752
. stage one stage one
trigger one one
Restriction storage Same as Same as Same as Same as
. . 8 0.111 stage 0.224 0.149 0.063 0.144 stage 0.096 | 0.055 | 0.149
trigger increment stage one stage one
one one
Murrumbidgee Same as Same as Same as Same as
diversion 2460 stage stage one 2414 stage stage one 0 3091 3091 0 4221 4221
(ML/month) one & one &
Murrumbidgee Same as Same as
Same as Same as
pump storage | stage 1 1 1 0.989 stage | U | ----- 1 |
. stage one stage one
trigger one one
Same as Same as
Number of houses 0 stage Same as 0 stage Same as 0 0 0 0 0 0
with tanks one stage one one stage one
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The capital and operational present worth costs for Scenarios 3, 4 and 6 are
almost the same but their restriction present worth costs vary significantly. Out of
these scenarios, Scenario 3 had the highest restriction cost. This is because all
decisions had to be made at the start of the first planning stage. In contrast, Scenarios
4 and 6 exploited the flexibility of adjusting restriction triggers over the planning
period. In stage one, a low level-one trigger could be adopted because that stage
experienced the lowest demand and benefited the most from the full state of the
storages at the start of the planning period — indeed virtually no restrictions were
experienced in the first stage. In the subsequent stages, the trigger was increased to

cope with the growing demand.

Scenario 6 demonstrates the benefits of having all decisions flexible. It has the
lowest average restriction cost among all scenarios. Since this scenario could
schedule capacity expansion decisions, it defers the capacity expansion of the
Murrumbidgee diversion to the second planning stage. This choice takes advantage of
the discounted construction cost and the fact that the system is initially full. As a
result, even though Scenario 6 has a substantially larger Murrumbidgee diversion
capacity than Scenarios 3 and 4, its discounted capital and operational costs are

virtually the same.

Not surprisingly, the optimal strategy is to provide flexibility in timing and
sizing for both infrastructure and operational decisions. This is clearly demonstrated
in Table 4-6 where Scenario 6 has the lowest total PWC and also the lowest
restriction present worth cost of restriction. However, the more significant finding is
that virtually all of the benefit from scheduling comes from allowing the operational
decisions to change over time. Indeed, having flexible operational rules reduces the
incidence of severe restrictions particularly in the last planning stage. It appears this
allows the optimizer to better adapt to the fact that in the first stage the initially full
system and the lowest demand impose the least stress on the system, while in the third
stage, the benefit of the initially full system is no longer “felt” and the demand is at its

highest.
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4-4-4 Scenarios 7 to 9: Sensitivity to Discount Rate

In all of above mentioned scenarios, the discount rate was set equal to 5%.
However, as Luss (1982) has observed, the estimation of discount rate is subjective.
The reality is that typically the discount rate used by the private sector is different
from that used by the public sector. To investigate the effect of discount rate on the
optimum solution, three scenarios with different discount rates, i.e. 1%, 5% and 10%
are compared. The total present worth costs are presented in Table 4-8. There are
large differences in PWC across the scenarios due to the spread in discount rates. The
PWC of Scenario 7 is about three times greater than for Scenario 9. However, the
important point here is that the discount rate exerts considerable influence on the
severity and frequency of restrictions over the three stages. As shown in Table 4-8,
Scenarios 8 and 9 have very similar total discounted restriction costs but their average
discounted restriction costs over the three stages are vastly different. It is also evident
that the higher the discount rate, the higher the undiscounted restriction costs in later

planning stages.

The optimum decisions for the three scenarios are presented in Table 4-9. It is
noted that only in Scenario 7 is the Cotter upgrade option invoked with an upgrade
capacity of 52,000 ML. This occurs because the use of the low discount rate of 1%
would result in a blowout of restriction costs if additional storage were not available

to reduce the frequency of restrictions.

The overall conclusion is that the discount rate determines how much reliance
the optimizer places on the imposition of restrictions to avoid unplanned shortfalls
and on how restrictions are distributed over the planning stages. Comparison of
Scenarios 7 to 9 clearly shows that as the discount rate increases, the investment in

infrastructure decreases at the expense of more restrictions imposed in future stages.




Table 4-8 Comparison of three scenarios with different discount rates

Scenario | Discount Total Capital and Total Undiscounted restriction cost Average of Standard
rate % present Operational present ($million) undiscounted deviation of
worth cost worth cost | Stagel | Stage2 | Stage3 | restrictioncost | restriction costs
cost ($million) of over three over three stages
($million) restrictions stages ($million)
($million)) ($million)
7 1 775 708 67 0 333 48.8 274 28.6
8 5 444 396 48 0.056 344 53.2 359 36.9
9 10 267 221 46 45.66 50.3 80.5 58.8 53.4
Table 4-9 Optimum decisions for Scenarios 7 to 9
Scenario 7 (r=1%) Scenario 8 (r=5%) Scenario 9 (r=10%)
Planning stage Planning stage Planning stage
Decisions One | Two | Three | One | Two | Three | One | Two | Three
Cotter capacity upgrade(ML) 0 0 14352 0 0 0 0 0 0
Level-one restriction storage trigger | 0.004 | 0.815 | 0.752 | 04 | 0.627 | 0.752 | 0.8 0.68 | 0.647
Restriction storage trigger increment | 0.18 | 0.162 | 0.162 | 0.096 | 0.055 | 0.149 | 0.211 | 0.061 | 0.061
Murrumbidgee diversion (ML/month) | 3995 | 3995 | 3995 0 4221 | 4221 0 3091 | 3091
Murrumbidgee pump storage trigger 1 1 1 - 1 1 - 1
Number of houses with tanks 0 0 0 0 0 0 0 0 0
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4-4-5 Scenarios 10 and 11: Revealing Equity Tradeoffs

In all the scenarios considered so far, only one objective, namely minimization of
the total present worth cost, was considered. This cost includes capital, operating and
restriction costs — unplanned shortfall costs were always zero because of their
punitive unit value. However, there is a trade-off between capital, operating and
unplanned shortfall costs and restriction costs. Indeed, more investment in
infrastructure results in less need to impose restrictions and vice versa. To
demonstrate this trade-off, Scenario 10 considers a multi-objective optimization
jointly minimizing capital, operating and unplanned shortfall costs and minimizing
restriction costs. The two objectives are described by Egs. (4.4) and (4.5). In
Figure 4-8 the Pareto frontier for Scenario 10 is presented. The results for Scenario 8§,
which is a special case of Scenario 10, are also shown in this figure. As expected, the
Scenario 8 result is located on the Parecto frontier, which confirms that Scenario 8

represents only one of the possible solutions for Scenario 10.

Figure 4-8 shows there is a distinct trade-off between capital, operating and
unplanned shortfall costs and the cost of imposing restrictions. Indeed, the restriction
cost can be very large in the absence of sufficient infrastructure investment. The
figure shows there is initially a very favourable trade-off between higher capital
investment and reduced restriction cost (see labeled points 1 and 2) followed by a
progressively worsening trade-off culminating with virtually zero restriction costs
when the present worth of capital, operating and unplanned shortfall costs exceeds
$750 million. Up to $750 million, there are no unplanned shortfall costs. However,
beyond that, unplanned shortfall costs grow rapidly to produce minute reductions in
restriction costs. This segment of the Pareto frontier would be of no interest to a

decision maker. It is presented here to document the full Pareto frontier.
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Figure 4-8 Pareto frontier for Scenario 10

Discounting can hide the significance of the impact of restrictions on the
community. To highlight this, five solutions on the Pareto frontier in Figure 4-8 were
selected with Table 4-10 providing a summary of these solutions. The results show
that for all the solutions, progressively more severe restrictions are imposed in future

planning stages highlighting the implicit inequity associated with discounting.

To deal explicitly with this equity issue and to offer the opportunity to moderate
differences across planning stages, the three-objective formulation described by Egs.
(4.6) to (4.8) is considered in Scenario 11. The first objective minimizes total present
worth of capital, operating and unplanned shortfall costs, while the remaining two
objectives introduce equity considerations. The second objective seeks to minimize
the magnitude of restriction costs across the stages while the third objective seeks to

minimize the difference in restriction costs between stages.

Figure 4-9 presents the Pareto frontier for Scenario 11. What is striking is the
absence of a surface. The trade-offs essentially lie on a one-dimensional thread. Once
significant restriction costs are encountered, there is a strong almost linear
dependence between objectives two and three, namely the average cost of
undiscounted restrictions and the variability of cost across stages. To offer more

insight into this trade-off, Figure 4-10 to Figure 4-12 present projections of the three-
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dimensional Pareto front onto three two-dimensional objective planes. Figure 4-10
shows that the average of undiscounted restriction costs decreases substantially as
capital, operating and unplanned shortfall cost increases. A similar trend can be seen
in Figure 4-11 for the standard deviation of undiscounted restriction costs.
Figure 4-12 presents the trade-off between the average and standard deviation of
undiscounted restriction costs. It shows that, unless there is sufficient investment to
eliminate restrictions, it is not possible to share equally the burden of restrictions
across stages; moreover, as the average level of restriction costs in a stage grows

there will be greater variability across the stages.

To highlight the difference between Scenarios 10 and 11, five solutions were
selected for each scenario in order to have equal capital and operating costs for each
pair of solutions. Table 4-11 presents the results. What is striking is the fact that
Scenario 11 produces solutions with lower average (undiscounted) restriction costs
across the planning stages and less variability in restriction cost between stages. This
significantly improved equity outcome arises solely from the choice of objective
functions. The use of three objectives enabled a more thorough exploration of cost
and equity with the consequent identification of solutions with more equitable

outcomes for the same capital and operating present worth cost.




Table 4-10 Comparison of five solutions marked on Figure 4-8 of Pareto frontier for Scenario 10

Unplanned . - iati
Capital and shortfall | Restrictions | Undiscounted Restriction Average of Standard deviation
; : cost ($million) undiscounted of undiscounted
Solution operational cost present worth L A
o restriction cost over restriction costs
label present worth ($million) cost h h
cost ($million) ($million) | Stage 1 | Stage2 | Stage3 thres stages over three stages
g g g ($million) ($million)
1 323 0 221 77.6 195.8 240.6 171 94.7
2 373 0 79.9 4.0 80.7 132.9 72.5 67.2
3 525 0 9.86 7.9 21.1 9.68 12.7
4 779.47 910.54 0.8067 0.269 0.0897 0.1268
5 779.39 1360.61 0.0085 0.028 0.0096 0.0136
Table 4-11 Comparison of five marked solutions on the Pareto frontiers for Scenarios 10 and 11
Scenario 10 Scenario 11
Capital and Average of Standard Capital Average of Standard
pital Unplanned crag deviation of and Unplanned | undiscounted deviation of
. operational undiscounted - : e .
Solution shortfall o undiscounted operational shortfall restriction cost undiscounted
present restriction cost . L
label cost restriction costs present cost over three restriction costs
worth cost illi over three stages h h illi h
($million) ($million) ($million) over three stages | worth cost ($million) stages over three stages
($million) ($million) ($million) ($million)
1 323 0 171 94.7 323 0 116 61
2 373 0 72.5 67.2 373 0 51.4 40.7
3 525 0 9.68 12.7 525 0 9.47 12.2
4 779.47 910.54 0.0897 0.1268 780.94 907.67 0.0897 0.1268
5 779.39 1360.61 0.0096 0.0136 779.49 1362.12 0.0096 0.0136
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Table 4-12 presents the decisions associated with the five Scenario 11 solutions
in Table 4-11. The table ranks the solutions from smallest to highest capital and
operating cost. The first solution has no capacity expansion except for the
Murrumbidgee diversion in the second planning stage. The first and second stage
level-one restriction triggers are very high indicating a high frequency of restrictions.
In solutions 2 and 3, the size of the Murrumbidgee diversion increases. For solution 3,
the Murrumbidgee diversion is brought forward to stage one and a rollout of
rainwater tanks over the three stages is adopted with the number of tanks hitting the
upper bound in stage two. Offsetting this increased capital investment are lower level-
one restriction triggers leading to a lower frequency of restrictions. Solutions 4 and 5
are the most costly with the Cotter upgrade and Murrumbidgee diversion maximized
in stage one and rainwater tank installations maximized in stage two. The level-one
restriction triggers are low resulting in virtual elimination of restrictions. It is noted
that a huge increase in unplanned shortfall cost is required to bring about a minute
reduction in restriction costs. As already noted, this is due to the punitive cost
assigned to unplanned shortfalls. Of interest, all solutions opted for the
Murrumbidgee diversion and set the pump trigger to one. This maximizes the yield

from what is the most cost effective capital option.




Table 4-12 Decisions associated with the five solutions presented in Table 4-11 for Scenario 11
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4-4-6 Scenario 12: Sensitivity to Initial Conditions

In the previous scenarios, it was observed that in the first planning stage
restrictions were typically low. This is attributed to the fact that the system was full at
the start of stage one and that stage one had the lowest demand. To separate the
contributions of these two factors, this section investigates the sensitivity of the
Pareto-optimal solutions to the initial reservoir storage. In Scenario 11, the reservoirs
are full at the start of the planning period, while in Scenario 12 the initial volume of
all reservoirs was set equal to the 25t percentile storage volumes obtained from a
130-year simulation using historical flows and demand corresponding to the start of
the planning period. Figure 4-13 shows the Pareto frontiers for Scenarios 11 and 12
together with five selected solutions on each front. These solutions were selected to
produce five pairs where each member of a pair was located on a different Pareto
front but had a near equal average undiscounted restriction cost. Tables 4-13 and 4-14
present the three objective function values for each solution as well as the

undiscounted restriction costs for each stage for Scenarios 11 and 12 respectively.

There is a striking shift in the Pareto frontier with all five Scenario 12 solutions
experiencing unplanned shortfalls during the first stage of the planning horizon. In
some of the replicates, there was a significant drought during the first planning stage.
The optimizer was unable to find a solution that could compensate for the low starting
storage in those replicates. There was no solution that could avoid “running out of

water”.
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More insight about the impact of initial conditions can be obtained by examining
Tables 4-15 and 4-16, which present the decisions associated with each marked
solution in Figure 4—13 for Scenarios 11 and 12 respectively. In stage one of Scenario
11, there is limited uptake of rainwater tanks and no expansion of Cotter capacity
(except for Solution 5). In contrast, for stage one of Scenario 12, all solutions opt for
maximum rainwater tank uptake and maximum Murrumbidgee diversion capacity.
This is because these options can immediately provide additional yield to the system.
Upgrading Cotter in stage one is not as effective because there is no storage in the
upgraded Cotter at the start of stage one. Consequently, if in a replicate a drought
occurs at the start of stage one, the upgraded Cotter remains effectively empty unable
to moderate the impact of the drought. In contrast, rainwater tanks will harvest any
available roof runoff, while the Murrumbidgee diversion will be able to divert any
river flow to Googong. In Scenario 12, solutions 3, 4 and 5 upgrade Cotter to

maximum capacity in stage one in order to reduce the burden of restrictions.

In this case study, the optimal scheduling policy is profoundly affected by the
initial state of the storages. The low initial storage in Scenario 12 makes the system
much more vulnerable to drought in the first planning stage. The stage-one decisions
reflect this vulnerability. They bring forward to stage one the maximum capital
investments that were deferred to latter stages in Scenario 11. Despite this, it was not
possible to avoid “running out of water” in some of the replicates. The short-term
vulnerability in Scenario 12 could not be adequately managed given the constraints

on the capital investment mix.




Table 4-13 Comparison of five points marked on Figure 4-13 of Pareto frontier for Scenario 11

Average of

Capital and Undiscounted restriction cost undiscounted Standard deviation of
Solution operational Unplanned shortfall ($million) restriction cost over undiscounted restriction
present worth cost ($million) three stages costs over three stages
cost ($million) Stage 1 Stage2 | Stage3 ($million) ($million)
1 333.46 0 130.85 96.56 85.01 104.14 54.98
2 454.93 0 10.33 31.83 33.65 25.26 21.87
3 612.70 0 0.03 5.41 6.90 4.11 5.51
4 679.29 0 0.00 3.75 1.34 1.69 2.39
5 779.67 100.91 0.00 0.00 1.01 0.335 0.474
Table 4-14 Comparison of five points marked on Figure 4-13 of Pareto frontier for Scenario 12
Cavital and Unplanned Undi ted restricti ; Average of Standard deviation of
o grational shortfall cost n |scoun$e 'IrI?S riction cos undiscounted undiscounted
Solution P ($million) ($million) restriction cost over restriction costs over
present worth cost h h
($million) Stage 1 | Stage2 | Stage 3 three stages three stages
g g & ($million) ($million)
1 647.85 7514.72 3998 | 53.12 | 217.48 103.52 86.36
2 673.77 7517.62 2732 | 2976 | 1924 2543 19.16
3 801.62 11947.28 10.88 0.08 1.31 4.09 5.42
4 802.39 1723471 5.27 0.00 0.03 1.76 248
5 802.81 22108.49 0.99 0.00 0.01 0.334 0.463




Table 4-15 Optimum decisions for five solutions presented in Table 4-13 for Scenario 11
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Table 4-16 Optimum decisions for five solutions presented in Table 4-14 for Scenario 12

Planning stage 1

Planning stage 2

Planning stage 3

g =05 | £ £ | 5| & = s | 5 |
g ) n =] = = 80 » =] = =} 20 » E =
< o —_— f=) = < = —_ =) = < o —_— = =
n 2 S & = & 2 2 S = = o 2 3 35 = = 9 3
& 2 | 8| = = & 7 @ | 8| = = g 2 8| = o
cCl el E 2l El S el ElEIEl o2 ElENE] RS
2 g | 5|z z 2 2 2| | Z Z 2 2 g T | B Z 2
s | & E| 2| B 8 | & el 2| B 8 | & 2| 2| 5
= Z =t Z =) Z
= = =
1 0 | 0471 ] 0.096 | 6000 | 1.000 | 15000 | 52000 | 0.741 | 0.150 | 6000 | 0.498 | 15000 | 52000 | 0.980 | 0.059 | 6000 | 0.996 | 15000
2 0 | 0.318]0.095 | 6000 | 1.000 | 14941 | 47765 | 0.643 | 0.149 | 6000 | 0.498 | 15000 | 47765 | 0.576 | 0.097 | 6000 | 1.000 | 15000
3 1100000 | 0.165 | 0.155 | 6000 | 0.996 | 14941 | 100000 | 0.259 | 0.193 | 6000 | 1 | 15000 | 100000 | 0.247 | 0.062 | 6000 | 1.000 | 15000
4 1100000 | 0.157 | 0.155 | 6000 | 0.988 | 14941 | 100000 | 0.016 | 0.190 | 6000 | 1 | 15000 | 100000 | 0.020 | 0.134 | 6000 | 1.000 | 15000
5 1100000 | 0.000 | 0.150 | 6000 | 0.996 | 14941 | 100000 | 0.008 | 0.197 | 6000 | 1 | 15000 | 100000 | 0.004 | 0.137 | 6000 | 1.000 | 15000
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4-5 Summary

Various options are available to water agencies responsible for meeting the
growing demand for water arising from urban population growth. These options
include operational decisions such as imposing restrictions, rules controlling water
transfers and allocations, policies promoting more efficient water use and
infrastructure investments such as harvesting new sources of water. Because the
performance of the urban water resource system will change over time, the challenge
is to find the best combination of these options over both time and scale (or

magnitude).

Many studies have investigated methods to find the optimum size and timing of
capacity expansion of projects with the aim of minimizing the total present worth
cost. However, review of these studies has identified a number of shortcomings.

These include the following:

1. Minimizing a single objective based on present worth cost hides a socially-
sensitive equity issue related to the sharing of the burden of restrictions across

planning stages.
2. Failure to optimize jointly infrastructure and operational decisions.

3. Failure to address drought security adequately due to inadequate sampling of

severe droughts.

This chapter presented a multi-objective formulation that addresses these
shortcomings in a practicable manner. The formulation uses a multi-replicate
approach in which multiple realizations of future inputs are simulated. It permits use
of a full simulation model that enables the tracking of system performance over time
and enables the optimization algorithm to search for the best mix of both

infrastructure and operational decisions.

A case study based on the Canberra headworks system demonstrated the ability
of this formulation to address in a practical manner the shortcomings identified in
earlier studies. The following conclusions based on the case study are considered to

have applicability beyond the case study itself:
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1. The joint scheduling of operational and infrastructure decisions can produce
significantly better outcomes than just scheduling infrastructure decisions. Indeed,
in the Canberra case study, virtually all of the benefit of scheduling over time was
attributed to scheduling operational decisions associated with the imposition of
restrictions. This arose because the first stage of the planning period benefited

from the storages being full at the start of the stage.

2. Minimizing total present worth cost can lead to more severe and frequent
restrictions in future planning stages. This is potentially an unacceptable social
outcome. The magnitude of this inequity is dependent on the discount rate with

higher discount rates leading to greater inequity in restriction outcomes.

3. The use of a multi-objective formulation, which minimizes the present cost of
capital, operating and unplanned shortfall costs together with the level and
variability of restriction costs across planning stages, makes the equity issue

visible to a decision maker.

4. The optimal scheduling solution can be sensitive to the initial state of the system.
In the Canberra case study, a low initial storage elevated the short-term
vulnerability of the system to drought. This is by no means an undesirable
finding. Indeed, by being able to schedule both infrastructure and operational
decisions across multiple planning stages, it is possible to adapt to changing
circumstances. This capability is arguably the most important feature of the

formulation developed in this chapter.

5. The current generation of multi-objective evolutionary algorithms makes the
multi-objective scheduling capacity expansion formulation developed in this
chapter practicable for urban systems with complexity similar to the Canberra
case study. The case study was conducted on a four-core desktop computer with
typical run times of 16 hours. With access to large computer clusters, more
complex systems can be studied with many more replicates than the 50 considered

in this chapter.




Chapter 5
Efficient Multi-Objective
Optimization Methods for
Computationally-Intensive Urban

Water Resources Models
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5-1 Introduction

The preceding chapters have focused on the formulation of multi-objective
optimization (MOQ) problems in the context of urban water management. In those
chapters the eMOEA method was employed to search for Pareto-optimal solutions.
This chapter considers the question whether there are MOO methods superior to
eMOEA for urban water resource applications. A number of heuristic algorithms,
including evolutionary, particle swarm and ant colony optimization methods, have
been developed for solving multi-objective problems (Czyz et al., 1998; Deb, 2001;
Deb et al., 2002a; Coello Coello, 2006; Huang et al., 2006; Marti nez et al., 2007).
The performance of these algorithms has been investigated mostly using well-known
benchmark problems (Zitzler et al., 2000; Deb et al., 2002b) with their results being
compared using a range of indicators that measure the convergence and diversity of

the solutions after a relatively large pre-defined number of function evaluations.

Unlike the benchmark problems, water resource applications typically use
computationally expensive methods for computing their objective functions (Pierro et
al., 2009). For example, in the case study presented in the previous chapter involving
the Canberra headworks system, a 30-year simulation with 50 replicates at monthly
time steps takes approximately 6 CPU seconds, which is several orders of magnitude
longer than the standard benchmark problems. Hence for an optimization involving
10,000 function evaluations, the turnaround time of nearly 17 hours is totally
dominated by the simulation model rather than by the optimization algorithm. Our
experience with urban water supply headworks models using long stochastically
generated streamflow at monthly time steps is that simulation run times of the order
of several minutes are typical. For instance, in the case study presented in Chapter 3
involving the Sydney headworks system, a 10,000-year simulation at monthly time
steps takes about 40 seconds. These long simulation run times are considered an
impediment to the practical uptake of MOO. While parallel computing can reduce
turnaround times (Cui and Kuczera, 2005), there is also a strong imperative to
identify or develop MOO methods which not only converge to the Pareto-optimal
front with good diversity but do so with the fewest possible function evaluations. This

is the subject of this chapter.
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In recent years a considerable number of studies have sought to address this
issue; for example Eskandari et al. (2007), Pierro et al. (2009), Santana-Quintero et al.
(2006) and Toscano-Pulido et al. (2007). The focus of these studies was identifying
which algorithm can produce a better Pareto front after a relatively small number of
evaluations. Durillo et al. (2010) took a different perspective comparing the number
of evaluations to reach a certain convergence criterion threshold for seven multi-
objective methods, namely NSGA-II, SPEA2, PAES, SMPSO, GDE3, AbYSS and
MOCell. They used three convergence criteria, the number of Pareto-optimal
solutions and the convergence and hypervolume metrics and concluded that SMPSO

was the best of the seven algorithms.

In the context of urban water resource optimization, the question as to which
MOO method is the best choice for a given function evaluations budget remains
unexplored. There is no study comparing the efficacy of MOO methods constrained
by a limited number of function evaluations nor is there any study evaluating the
number of evaluations to reach convergence thresholds. The primary objective of this

chapter is to address this question.

A recent development in probabilistic optimization, called ant colony
optimization (ACO), was proposed by Dorigo et al. (1996). ACO emulates the
foraging behaviour exhibited by ant colonies in their search for food. ACO algorithms
have been successfully applied to a number of benchmark combinatorial optimization
problems, such as the travelling salesman and quadratic assignment problems (Dorigo
and Stiitzle, 2004; Stiitzle et al., 2010). The good performance of ACO in single
objective optimization motivated researchers to apply ACO to multi-objective
problems (Iredi, 2001; Shelokar et al., 2002; Garcia-Martinez, 2004; Alaya et al.,
2007; Angus, 2007b; Bui et al., 2008; Angus and Woodward, 2009). However, these
studies have focussed on combinatorial problems, while many engineering problems
include decision variables that have a continuous, real-valued domain. A limited
number of studies have applied multi-objective ACO methods to problems with
continuous real-valued search spaces (Shelokar et al., 2002; Angus, 2007a; Afshar et
al., 2009).

Computationally expensive problems such as encountered in urban water

resources provide a strong motivation to develop new optimization methods that
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require fewer evaluations to converge. The secondary objective of this chapter is to
explore whether the multi-objective ant colony optimization approach can be
successfully adapted to solve computationally-intensive problems typical of urban

water resources.

This chapter is organized as follows: First, a review of existing MOO methods is
presented from which three benchmark methods are selected. This is followed by a
discussion of the performance metrics to be used in the case studies and a brief
description of the two urban water resource case studies and the benchmark problems.
Then the principles of ant colony optimization are described after which a new
MOACO algorithm, MOACO-state, incorporating the best features of the existing
MOACO algorithms, is proposed and further enhanced. Finally, using two urban
water resource case studies, the performance of the new MOACO methods is

compared against three benchmark methods.

5-2 Review of Existing MOO Methods

The last decade has seen considerable effort towards developing efficient MOO
methods for computationally-intensive problems. Eskandari et al. (2007) proposed a
new algorithm called fast Pareto genetic algorithm (FastPGA) which uses a new
fitness assignment and ranking strategy. They compared their method against NSGA-
IT using four benchmark problems known as the Ziztler-Deb-Thiele (ZDT) test suite
and found that FastPGA outperformed NSGA-II in terms of convergence and
diversity after completion of a relatively small number of evaluations (6500 and
10000). Pierro et al. (2009) applied two hybrid algorithms, ParEGO and LEMMO, to
optimize cost and pressure deficit in water distribution network systems and
compared their performance against an evolutionary algorithm called PESA-II. They
found for a medium sized network that LEMMO generated solutions after 10,000
evaluations that were comparable with those produced by PESA-II results after
100,000 evaluations. However, for a large network involving 600 decisions LEMMO
did not perform well. Santana-Quintero et al. (2006) developed a new particle swarm
optimization in conjunction of a local search method. They tested their method for
two sets of benchmark problems, ZDT and DTLZ. After 4,000 evaluations, the
method was shown to outperform the well-established benchmark NSGA-II algorithm
for the ZDT problems but it did not perform well for DTLZ problems. In a similar
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study, Toscano-Pulido et al. (2007) presented an efficient multi-objective particle
swarm optimization method EMOPOS, which, after 2000 evaluations, produced a
solution closer to the optimal Pareto front than did NSGA-II for the same number of

evaluations.

The focus of above-mentioned studies was evaluating the performance of
algorithms after a pre-defined number of evaluations. This type of analysis can be
approached from a different perspective. For instance, Nebro et al. (2008) ranked six
multi-objective optimization methods, namely NSGA-II, SPEA2, PAES, OMOPSO,
AbYSS and MOCell, according to the number of evaluations required to produce
Pareto front with a certain accuracy. They found MOCell, OMOPSO, and AbYSS the
most competitive algorithms. In a similar study, Durillo et al. (2010) analysed the
performance of similar multi-objective methods, except SMPSO replaced OMOPSO
and GDE3 was added, using three criteria, the number of Pareto-optimal solutions,
the convergence metric and the hypervolume metric. They concluded that SMPSO

performed the best of the seven algorithms.

In this study three methods, namely NSGA-II, eMOEA and SMPSO, were
selected for comparison based on their usage and performance reported in the
literature and on the availability of computer codes. NSGA-II has been widely
applied in the MOO literature, often being used as a benchmark for new developed
methods in computationally-intensive problems (Santana-Quintero et al., 2006;
Eskandari et al., 2007; Toscano-Pulido et al., 2007; Nebro et al., 2008; Durillo et al.,
2010). In Chapter 2 it was argued that eMOEA may perform better than NSGA-II and
thus was selected for use in the case studies reported in Chapters 3 and 4.
Accordingly, eMOEA was selected to test this; moreover, there is no study evaluating
the performance of eMOEA when the number of evaluations is constrained. Finally,
SMPSO was chosen because of its superior performance among the seven state-of-

the-art MOO methods evaluated by Durillo et al. (2010).

In following sections SMPSO and NSGA-II algorithms are described briefly.
The eMOEA algorithm was described in Chapter 2.
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5-2-1 SMPSO

Particle swarm optimization (PSO) is a population-based metaheuristic method
mimicking the social behavior of bird flocking. The initial ideas on particle swarms
were proposed by Kennedy and Eberhart (1995). Since then many studies have been
carried out to develop and improve PSO; see Poli et al. (2007). PSO has been shown
to produce good results at a very low computational cost (Kennedy et al., 2001;

Engelbrecht, 2006; Reyes-Sierra and Coello, 2006).

The good performance of PSO in single objective optimization applications
motivated researchers to extend it to multi-objective problems. Moore and Chapman
developed the first multi-objective implementation of PSO in 1999 and since then
more than twenty different methods have been reported (Reyes-Sierra and Coello,

2006).

Each particle in PSO is composed of three vectors, its current positionx,, the
best solution that particle i has viewed p,, and its current velocity v,. The position X,

represents a set of coordinates in the search space. Each particle is influenced by the
best point found by any member of its topological neighbourhood. This best particle

is denoted as a leader (p,). In multi-objective optimization problems all non-

dominated solutions are considered to be leaders. During the optimization search the
velocity of each particle is iteratively adjusted so that the particle stochastically

fluctuates around p, and p,. In speed-constrained multi-objective PSO (SMPSO),
the leader particle p, is selected by sampling two solutions from the external archive

and selecting the one which has the largest crowding distance to its neighbor in the

archive (Nebro et al., 2009).

Figure 5-1 presents pseudo code for SMPSO. The first step initializes the swarm
by assigning a population of particles with random positions and velocities. The
second step initializes the leaders in the external archive with non-dominated
solutions in swarm. Thereafter the main loop of algorithm is executed until
termination criteria met. Termination may be defined by a maximum number of
evaluations, the attainment of a prescribed accuracy or the maximum number of

evaluations during which no improvement occurs.
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The first step in the main loop is to calculate velocity of each particle as follows:
V(1) = Xx(wv(t=1) + Co.r(p, = %) + Cy1.(p, = X)) (5.1

where w is the inertia weight of the particle which controls the trade-off between
global and local experiences, r; and r, represent random numbers uniformly
distributed in [0,1], C; and C, are specific parameters which control the effect of the

local and global best particles and X is defined by

2

X =
¢_2+\/¢2 —4¢ (5.2)

where

¢:{C1+C2 if C+C,>4 (5.3)

0 if C+C, <4

Nebro et al. (2009) introduced a mechanism to bind further the speed of each

variable j in particle 1 as follows:

delta, if'v, () > delta;
v, () =q—delta, if v, (t)<—delta, (5.4)

v,,(t)  otherwise

where
upper limit , — lower limit
delta, = (upp / ) (5.5
2
The position of each particle is updated based on:
5(1) = F(e=1) + ¥,0) (5.6)

After updating the particle’s position, the polynomial mutation (Deb, 2001) on
particle’s velocity is performed with a given probability. The objective functions
values associated with the new particle are evaluated. If these values dominate the
objective values at the previous position, the position of the particle is updated and

the new objective values are compared with the leaders archive. If the new solution
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dominates a leader in the archive then that leader will be replaced by the new
solution. On termination, the leader archive represents the approximate Pareto-

optimal solutions.

In SMPSO, as in NSGA-II, the leader archive size is fixed. As a result, the
number of leaders can exceed the archive size. Thus, if the leader archive is full and a
new solution does not dominate any archive solution, a crowding distance approach is

used to decide which particle may be retained in the leader archive (Nebro et al.,

2009).

This study used the jMetal code, which is a Java implementation of SMPSO by
Durillo and Nebro (2011).

Initialize Swarm

Initialize LeadersArchive

while (termination criteria are not met) do
ComputeVelocity()/ Egs. (5.1) to (5.5)
UpdatePosition() / Eq. (5.6)
Mutation()
Evaluation()
UpdateParticlesMemory()
UpdateLeadersArchive()

end while

ReturnLeadersArchive()

Figure 5-1 Pseudo code for the SMPSO algorithm (Adapted from Nebro et al. (2009))

5-2-2 NSGA-II

The non-dominated sorting genetic algorithm (NSGA) proposed by Srinivas and
Deb (1994) was one of the first EAs in context of multi-objective application.
Criticisms of the NSGA approach included the high computational complexity of
non-dominated sorting, lack of elitism and the need for specifying sharing parameters
(Deb et al., 2002a). Deb et al. (2002a) addressed these issues by introducing the fast
non-dominated sorting approach and crowding distance feature in an improved

version of NSGA called NSGA-II.

In the fast non-dominated sorting approach, two entities are calculated for each
solution, p, in the population: 1) the domination count, n, which is the number of

solutions that dominate solution p; and 2) S, which is a set of solutions that the
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solution p dominates. The domination count of all solutions in the first non-
dominated front is zero. For each solution p with n, = 0, each member (q) of its S, set,
is visited and the associated n, of that member is reduced by one. If n, of any member
becomes zero it means this member belongs to the next non-dominated front. When
all the members of the current front are visited, the procedure is repeated for the next

non-dominated front. This process terminates when all fronts have been identified.

The crowding-distance approach is the second key enhancement to NSGA. The
first step is to sort the population according to each normalized objective function
value in ascending order. Then, for each objective function, solutions with the
smallest and largest function values are assigned an infinite distance value. For all
other intermediate solutions, a distance equal to the absolute normalized difference in
each function value of the two adjacent solutions is calculated. This procedure is
repeated for all objectives. The crowding-distance is then calculated as the sum of
individual distance values corresponding to each objective. In Figure 5-2, which
depicts the minimization of two objectives, the crowding-distance of the i solution is

the average side length of the cuboid.

ﬁ\
£, 0
o o
O
®
. Cuboid
-] - - - - -~ "I 0
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i+1 d

Figure 5-2 Illustration of crowding-distance algorithm. The points marked as filled

circles are solutions of the same non-dominated front (Deb et al., 2002a)

The NSGA-II algorithm is straightforward to apply. Initially, a random
population Py is created. Then the population is sorted into a number of non-

dominated fronts using a fast non-dominated sorting approach, after which each
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solution is assigned a fitness value equal to its non-domination front. Applying
selection, recombination and mutation operators creates an offspring population Qg of
population size (N). As presented in Figure 5-3, the two populations are combined to
form R of size 2N. Combining all previous and current population members ensures
elitism. Then, all solutions are sorted using non-dominated sorting approach. The
solutions belonging to the first non-dominated front are the best solutions in the
combined population. If the number of solutions in the first front is fewer than N then
all the solutions will be selected. The remaining members of the new population are
selected from the subsequent non-dominated fronts in the order of their rankings. This
process continues until all slots in the new population filled. During this process, it is
possible to have more number of solutions in a front compared with the available
slots in the new population. In this case, application of the crowding-distance
algorithm ensures solutions within the less crowded regions will be selected (Deb et

al., 2002a). This improves the diversity of population.

Non-dominated Crowding distance P(t+1)
sorting sorting
Fl ___________________________ =
o | —— —
Fs

QO

<— Rejected

LB

Figure 5-3 NSGA-II procedure (Deb et al., 2002a)

The NSGA-II code used in this study was obtained from the Kanpur Genetic

Algorithms Laboratory web site (http://www.iitk.ac.in/kangal/codes.shtml, last visit
14/05/2012).
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5-3 Evaluation of Multi-Objective Performance

Various performance metrics for measuring the quality of a Pareto-optimal set
have been proposed to compare the performance of different multi-objective
algorithms (Deb, 2001). However, there is no clear consensus in the literature on how
the performance of multi-objective methods should be evaluated or compared. Deb
and Jain (2002) suggested the use of metrics to characterize the two main functional
objectives of MOO methods, proximity and diversity. Hadka and Reed (2011)
investigated a broad range of performance metrics including hypervolume,
generational distance (GD), inverse generational distance, additive epsilon indicator
(e+-indicator) and spread. They recommended three metrics to characterize the three
main functional objectives of MOO methods associated with proximity, diversity and
consistency. The GD and hypervolume metrics are used to assess proximity and
diversity respectively, while the g;-indicator is used to assess the consistency of the
proximity of solutions. In this chapter the three measures recommended by Hadka
and Reed (2011) were used to compares the competing MOO algorithms. In all of
these measures, normalized objective values are used. The following sections discuss

each of these measures in more detail.

5-3-1 Convergence (Generational Distance) Metric

The convergence metric is a proximity or distance measure describing how close
a set of non-dominated solutions is to the Pareto-optimal front (Van Veldhuizen and
Lamont, 2000). The minimum normalized Euclidean distance from each point i in the
non-dominated solution set (Q) to the reference solution set (P*) is calculated using

the following equation (Deb and Jain, 2002)

oo [ L0 5

where f™ and f™"are the maximum and minimum function values of the n™

objective function in P*. f,(i) is the n™ function value of point i in the set Q and f,(j)
is the n™ function value of point j in the set P*. K is the number of objectives. The
average of d; is taken to be the convergence metric. The smaller the value of this

metric, the closer the solutions are to the reference solution set.
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The principal shortcoming of the convergence metric is that it contains no
information about diversity. For instance, consider Figure 5-4, which illustrates two
sets of non-dominated solutions along with the reference set. Set 1 has a smaller
convergence metric than set 2. However, it is clear that set 2 has a superior coverage
of the reference solution set. For this reason, it is necessary to use other measures that

monitor the diversity of the non-dominated solution set.

Af

‘ ‘ Reference solution set
‘ A Non-dominated set 1

‘ ’ Non-dominated set 2
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Figure 5-4 Schematic showing three non-dominated fronts to illustrate shortcoming

of convergence metric

5-3-2 Hypervolume Ratio (HVR)

The hypervolume (HV) metric is defined as the volume (in objective space)
enclosed by a reference point and the non-dominated solution set. The reference point
can be defined using the worst objective function values. To illustrate this concept
consider Figure 5-5 which shows a Pareto-optimal front, a non-dominated solution set
(A, B and C) and a reference point denoted by W. The dashed lines define the
hypervolume enclosed by non-dominated solutions. When the same reference point is
used for multiple non-dominated fronts, the front with the larger HV is considered to
be superior. In this study, the method developed by Fonseca et al. (2006) is used. This
method is coded in an R package called “emoa” which can be downloaded from

“http://www statistik.tu-dortmund.de/~olafm/software/” (last visit 24/05/12).
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o1

Pareto-optimal front

.
'
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Figure 5-5 Hypervolume defined by the non-dominated solutions A, B and C
(Durillo et al., 2010)

The hypervolume ratio (HVR) normalizes the HV to facilitate comparisons (Deb,
2001). It is defined as the ratio of the HV for a non-dominated solution set Q and the
HV of a reference solution set P* which is taken to be the approximate Pareto-optimal

solution set:

VR = —HV(Q*)
HV(P) (5.8)

5-3-3 Additive Epsilon Indicator (I.)

The convergence and hypervolume metrics measure the proximity and diversity
of a non-dominated solution set. However, these measures fail to identify a non-
dominated solution set which contains one or more solutions with poor proximity. To
deal with this another measure called I+ is introduced It is defined as the smallest
distance one would need to translate every point in the non-dominated solution set, Q,
so that it dominates a reference solution set, P* (Zitzler et al., 2002). Formally, if x; is
an element of Q, x, is an element of P* and K is the number of objectives, the I,

metric is (Durillo and Nebro, 2011):
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1,.(0)= inlg{‘v’x2 eP3x, eQ:x <ex,} (5.9)

where, x, <éex,ifand only if VI<i<K: f(x)<e+ f(x,)

Figure 5-6 illustrates the importance of this measure as a way dealing with the
shortcoming of convergence and hypervolume metrics. Figure 5-6(a) shows a good
approximation set, indicated by filled circles, and the reference set, indicated by the
dashed line. In Figure 5-6(b) a new approximation set with a gap is illustrated. This
new set is the same as the set in Figure 5-6(a) except the missing points are shaded
light grey. The convergence measure fails to identify this gap because it averages the
distance between the approximation set and reference set thereby reducing the impact
of large gaps. The hypervolume measure also fails to identify the gap since the
change in hypervolume due to a gap is small relative to the entire hypervolume - this
is illustrated in Figure 5-6(c). However, the I.; measure readily identifies the gap
because it will be 2-3 times worse for the set with missing points as shown in
Figure 5-6(d) (Hadka and Reed 2011). The I.; measure can be interpreted as a
measure of the quality or consistency of the coverage of the reference set. Therefore,

the smaller the value of this metric, the smaller the gap in the solution set.
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Figure 5-6 lllustration of 1.+ as a measure of consistency (Hadka and Reed, 2011)

It is stressed that the convergence, HVR and I;: metrics require knowledge of the
reference solution set which in this chapter is referred to as the approximate Pareto-

optimal solutions set.

5-4 Overview of Case Studies to Evaluate MOO Methods

In this chapter two urban water resource case studies based on the Canberra and

Sydney headworks supply systems, are used to assess the performance of different
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MOO methods. Detailed descriptions of these case studies can be found in Chapters 3
and 4. In addition, six benchmark problems and two water management case studies
are used to test performance of MOACO variants. The purpose of this section is to

summarize briefly the decisions and objectives used in these case studies.

5-4-1 Canberra Headworks System

The Canberra headworks system has four reservoirs supplying water to the city
of Canberra. The layout of the system is presented in Figure 4-3. Details of the
system can be found in Section 4-3-1. The main difference between the simulations
conducted in this chapter and Chapter 4 is that there is no population growth and only
one streamflow replicate is used based on the historical data for the period 1871 to

2009 during which several major droughts were experienced.

Thirteen decision variables are considered which categorized as either
operational in that they control the running of the system or as infrastructure in that
they define the physical characteristics of the system. The decisions are summarized
in Table 5-1. Operational decisions include storage triggers for imposing restrictions,
a pump mark for turning on the Murrumbidgee-Googong diversion, and parameters
that determine the balance of storage between the Googong and Corin catchments.
Infrastructural decisions involve major capital works to upgrade the capacity of
Cotter Dam, a pumping station, the Stromlo water treatment plant and the
construction of the Murrumbidgee diversion. In addition, the installation of rainwater
tanks on individual allotments is supported to harvest roofwater and use it for non-

potable indoor and outdoor uses.
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Table 5-1 List of decision variables used in Canberra case study

Decision Decision variable Lower Upper Category
limit limit
1 Murrumbidgee pump trigger 0 1 Operational
2 Murrumbidgee diversion capacity 0 6000 Infrastructure
3 Cotter pump capacity 3050 10000 Infrastructure
4 Googong incremental gain 20 500 Operational
5 Googong base gain 9000 11000 Operational
6 First restriction trigger level 1 0 0.999 Operational
7 Trigger intervals 0.05 0.25 Operational
8 Stromlo water treatment plant capacity 7625 15000 Infrastructure
9 Cotter incremental gain 20 500 Operational
10 Cotter base gain 9000 11000 Operational
11 Googong water treatment plant capacity 8235 15000 Infrastructure
12 Cotter Reservoir capacity upgrade 0 100000 Infrastructure
13 Number of houses used water tank 0 15000 Infrastructure

1y

2)

Up to three objectives were used:

Minimize the frequency of restrictions expressed as the percentage of months
during which restrictions on water consumption are imposed. The restriction time

fraction criterion is an important level-of-service measure.

Minimize the expected present worth cost ($) defined as the sum of capital and
discounted expected operating costs and the costs of unplanned shortfalls. The
capital cost represents the cost of building new infrastructure such as dams or
water treatment plant capacity upgrades. Table 5-2 summarizes the capital cost
items. It is noted the costs are hypothetical and thus should not be taken literally.
Two capital items involve a binary choice: if the item is selected by the
optimization, then there is fixed setup cost along with a unit cost; if the item is not
selected, there is zero capital cost. The operating cost includes the costs for
pumping from Cotter Reservoir and the Murrumbidgee River to the Stromlo water
treatment plant and pumping from the Murrumbidgee River to Googong
Reservoir, and the transfer and treatment costs associated with Stromlo and

Googong water treatment plants. A 5% discount rate was used.

An unplanned shortfall arises when the system is unable to supply, demand that
may be restricted; in most cases, an unplanned shortfall arises when reservoirs
empty and there is insufficient streamflow. To steer the optimization away from
solutions that result in unplanned shortfalls, a penalty of $1,000,000 per ML

unplanned shortfalls is added to the present worth cost.
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3) Minimize the fraction of time that total reservoir storage falls below 20%:
This objective measures the vulnerability of the supply system to drought

condition.

Apart from the constraint on unplanned shortfalls, which was implemented using
a penalty function approach, the only other constraints were the limits on the decision

variables summarized in Table 5-1.

Table 5-2 Capital decision variables for the Canberra water headworks system

Decision Variable Unit Cost
Cotter pump capacity upgrade $1000/ML
Cotter Reservoir capacity upgrade $50x10°+$1923/ML
Stromlo and Googong WTP capacity upgrade $9180/ML
Murrumbidgee to Googong pump diversion | $20 x10°+$42623/ML
Water tanks $3000/ house

5-4-2 Sydney Headworks System

A full description of the Sydney headworks system can be found in
Section 3-4-2. In this chapter, 150 years of stochastically generated streamflow data

were used.

A large number of options are available to ensure a secure water supply for the
7-million population scenario. In this case study, eleven decision variables, listed in
Table 5-3, were selected. Decisions 1 and 2 control the pump transfer of water from
the Shoalhaven basin. Decisions 3 and 4 define the first stage of the drought
contingency plan (DCP) to determine restriction levels. Decisions 5 and 6 define the
second stage of the DCP. When the total storage fraction falls below the trigger given
by decision 6, the already-constructed desalination plant with capacity given by
decision 5 is activated. Decision 7 defines the capacity of Welcome Reef Reservoir.
Decisions 8 and 9 define the priority for storing water in Warragamba. Depending on
the values assigned to decisions 8 and 9, water may be preferentially stored in
Warragamba or in the rest of the system. Decisions 10 and 11 define the maximum
monthly Wollondilly transfer capacity during September to March and at other times
respectively. The lower limit on these decisions corresponds to that recommended by
Scott and Grant (1997). These two decisions are active in the three-objective scenario

and fixed in the other scenarios.
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Table 5-3 List of decision variables used in Sydney case study

Decision Description Lower | Upper Category

variable limit limit
1 Pump mark Warragamba 0.3 1 Operational
2 Pump mark Avon 0.3 1 Operational
3 Level 1 restriction trigger 0.05 0.95 Operational
4 Trigger increment 0.05 0.25 Operational
5 Desalination plant capacity (ML/day) 0 1,000 Infrastructure
6 Desalination plant trigger 0.05 0.95 Operational
7 Welcome Reef capacity (ML) 0 100,000 | Infrastructure
8 Warragamba base gain 8,000 12,000 Operational
9 Warragamba incremental gain 10 200 Operational
10 Maximum Wollondilly flow during 12,200 | 100,000 Operational

September to March (ML/month)
11 Maximum Wollondilly flow at other times 18,300 | 100,000 Operational
(ML/month)

1)

2)

Up to three objectives were considered:

Minimize frequency of restrictions (%) defined as the percentage of months

during which restrictions on water consumption are imposed.

Minimize the present worth cost ($) defined as the sum of capital and
discounted expected operating costs and the costs of unplanned shortfalls. The
capital cost represents the cost of building new infrastructure, which in this case
study, is the Welcome Reef dam and/or the desalination plant. Table 5-4
summarizes the capital costs for Welcome Reef and the desalination plant. The
capital cost model uses a binary function: if the asset is selected by the
optimization, then the total cost is the sum of a fixed setup cost and a cost
proportional to the size of the asset; however, if the asset is not selected, the
capital cost is zero. The operating cost includes the costs for pumping transfers
from the Shoalhaven and operation of the desalination plant. A 5% discount rate

was used.

The constraint on unplanned shortfalls is imposed using a penalty function
approach. Here, a penalty of $100,000 per ML unplanned shortfall is added to the
present worth cost. This penalty was selected to steer the optimization search
away from solutions which allow reservoirs to “run dry” with consequent failure

to supply minimum water needs.
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3) Minimize environmental stress on the Wollondilly River: The following
environmental stress metric was adopted to penalize the adoption of maximum
regulated flow limits, defined by decisions 10 and 11, in excess of those

recommended by Scott and Grant.

max| 0, 5 4, =12200 if me{Sept,.., March}
12200

Stress(m)= (5.10)

q, —18300 ) |. .

max| 0, | ==— | [if me {April,.., August
[ ( 18300 AP gust;

where ¢, 1s the actual regulated release in the Wollondilly in month m and

Stress(m) is the penalty for exceeding the recommended flow limits in month m.

The environmental stress criterion is the sum of the monthly stresses over the

simulation.

Apart from the constraint on unplanned shortfalls, which was implemented using
a penalty function approach, the only other constraints were the limits on the decision

variables summarized in Table 5-3.

Table 5-4 Cost summary for infrastructure decision variables in Sydney case study

Decision Variable Fixed and Unit Costs
Desalination plant capacity (ML/day) $1,250,000,000 + $4,000,000 ML/day
Welcome Reef capacity (ML) $100,000,000 + $1000/ML storage

5-4-3 Benchmark Problems

The performance of MOO algorithms is usually assessed using well-known
benchmarks such as the Ziztler-Deb-Thiele (ZDT) test suite (Zitzler et al., 2000) and
the DTLZ problems (Deb et al., 2002b). The eight-benchmark problems provide a
sample of different types of Pareto fronts and different numbers of decision variables,
thereby improving the chance of identifying efficient and robust MOO methods.
Table 5-5 summarizes the benchmark problems that were used to evaluate the

performance of different MOACO algorithms.
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Table 5-5 Summary of benchmark problem characteristics

Name Numb§r of Number of Type of Pareto Front
objectives variables

ZDT1 2 30 Convex

ZDT3 2 30 Convex, disconnected

ZDT4 2 10 Convex, multimodal

ZDT6 2 10 Concave, non-uniformly spaced
DTLZ1 3 7 Linear, multimodal
DTLZ2 3 12 Concave
DTLZ3 3 12 Concave, multimodal
DTLZ6 3 22 Degenerate

5-5 Ant Colony Optimization

In the preceding sections, three benchmark MOO methods, namely EMOEA,
NSGA-II and SMPSO, were introduced. The focus of this section is the investigation
of the potential of ant colony optimization (ACO) for applications involving urban
water management. If the reader is mainly interested in the evaluation of MOO
algorithm performance in the urban water resource context, then the reader may skip
this section and proceed directly to Section 5-6. This section is organized as follows:
First, the ACO method is briefly explained. Then existing multi-objective ant colony
optimization (MOACO) algorithms are critically reviewed. Three MOACO methods,
called MOACO-State, EMOACO and EMOACO-I, are then proposed to overcome
the shortcomings identified in existing methods. These ACO methods are included in

the evaluation of MOO algorithms in Section 5-6.

5-5-1 Overview of Ant Colony Optimization

Ant colony optimization is a recently developed heuristic optimization method. It
was inspired by the fact that some species of ants are blind but nonetheless can find
the minimum path between their nest and food. This is because of a chemical
substances called pheromone that ants deposit when they travel on a route (Dorigo
and Stiitzle, 2004). Based on the behaviour of real ants, Dorigo et al. (1991) and
Dorigo et al. (1996) developed the first ant colony optimization method called Ant
System (AS) to solve the travelling salesman problem (TSP) and job-shop scheduling
problem (JSP).

The first step in ACO is to represent the search space as a graph. In the literature,
two approaches have been used to represent the search space. The nodal method was

applied by Abbaspour et al. (2001) and Kumar and Reddy (2006) using a graph
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similar to Figure 5-7 while the link method was used by Maier et al. (2003) using a
graph similar to Figure 5-8. In both approaches, the first step is to split the range of
each decision variable into a specific number of segments with a representative value
assigned for each segment. In the nodal method, each variable value is represented by
a node, and in the link method by a route. Ants travel between nodes corresponding to
different variables to define a route as illustrated in Figures 5-7 and 5-8. In the nodal
method, the route is denoted as (k, i, j) which means an ant travels from node i of
variable k to node j of variable k+1, while in the second approach, the route is
denoted as (k,i) which means an ant travels along route i from node k which
corresponds to the i™ segment of variable k. To handle constraints in ACO, a tabu list

can be defined to prevent ants travelling on infeasible routes.

One of the drawbacks of the nodal method is the potentially huge number of
route combinations. To illustrate this, Figure 5-9 shows the possible routes for the
nodal and link method when there are three segments. It shows there are nine possible
routes for the nodal method and six possible routes for the link method. This
difference rapidly grows as the number of variables and segments is increased. The
large number of possible routes in the nodal method limits its ability to explore the
search space. Mortazavi N. et al. (2009) compared these two methods and concluded
the link method is the better choice. Accordingly, in this study, the link method is

used.
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Figure 5-7 Schematic for nodal method showing ant routes between five discrete

variables (Abbaspour et al., 2001)
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Figure 5-8 Schematic for link method showing ant routes

between two discrete variables

Nodal Method Link Method

Figure 5-9 Depiction of possible routes for nodal and link methods

The next step is to define a transition rule that describes how ants select their
route. The transition rule for the i variable in the link model is (Dorigo and Stiitzle

2004):

[7,1"[n, 1’

D[,V

i=1

(5.11)

i

where Pjj is the probability the ant at node i will travel on link j, 7, is the pheromone
trail strength and 7, is heuristic information. The parameters o and S are

introduced to control the relative importance of the pheromone and heuristic

information respectively.
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The pheromone trail strength encodes a long-term memory about the entire ant
search process, and is updated by the ants themselves. In contrast, the heuristic
information represents a priori information about the problem or run-time information
provided by a source different from ants. Review of the literature shows there is no
general rule for defining heuristic information. For instance, Dorigo et al. (1996)
defined the inverse of distance between cities as heuristic information in the TSP

while Maier et al. (2003) applied the inverse of cost of individual pipes.

When all ants complete their tours, the pheromone information is updated in two
ways according to the following equation:

—(1— *
7, =(1-p)*r;,+Az (5.12)

First, pheromone is reduced in strength by evaporation where p is the fraction of
pheromone that evaporates. Second, ants deposit an amount of pheromone on the
paths they visited with the magnitude of At based on the quality of the solutions they

found.

Various ACO methods have been developed to improve AS performance. The
first improvement, based on the concept of elitism, was introduced by Dorigo et al.
(1991) and Dorigo et al. (1996). The main idea is to add significant additional

pheromone onto the arcs belonging to the best tour found since the start of the search.

The MAX-MIN AS introduced four modifications with respect to AS (Stiitzle
and Hoos, 1996; Stiitzle and Hoos, 1997; Stiitzle and Hoos, 2000). The first
modification strongly exploits the best tour found. Only either the iteration-best route
(that is, the best route in the current iteration) or the best-so-far route is allowed to
receive pheromone. The drawback of this strategy is that it can lead to stagnation
where all ants follow the same, although suboptimal, tour. To overcome this
shortcoming, the second modification limits the pheromone values on all routes to the

interval [z, ,7_ ]. The third modification initialized the pheromone on all routes to

min ® © max ]
Tmax Which in conjunction with a small evaporation rate increases the exploration at
the start of the search process. Finally, pheromone values were reinitialized when the

system reaches stagnation (Dorigo and Stiitzle, 2004).
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Stiitzle and Hoos (1997) defined the maximum amount of pheromone for a TSP

as follows

(5.13)

1 1
z-max =0
p Lopt

where p is evaporation rate and Loy is the shortest route found in an iteration. The

minimum amount of pheromone is defined by (Stiitzle and Hoos 1996):

. = 1_ A pbest
min max (an _ 1) n’pbest (5 14)

where avg is the average number of different choices available to an ant at each step
and n is number of segments. It is assumed that a run of MAX-MIN AS has
converged if the best found route is constructed with a probability significantly higher

than 0 — this probability is assigned a specific value pj.y (Stiitzle and Hoos 2000).

The Ant Colony System (ACS) (Dorigo and Gambardella, 1997) is another
improved method based on AS which differs in three aspects, namely transition rule,
global and local updating. ACS explores the search space more strongly due to its

more aggressive transition rule. The transition rule in ACS is as follows:

argmax {z,[n,1"} if q<gq,
j=1 e (5.15)

J otherwise

where q is a random number uniformly distributed in [0,1], qo is a parameter and J is

a random variable selected according to Eq. (5.11) with a=1.

In ACS pheromone is only updated on the best-so-far routes. The pheromone
level is updated by applying the global updating rule using Eq. (5.12) where T
denotes route (i, j) that belongs to the best-so-far solution. The local updating rule is
applied to all routes in a tour. In this rule pheromone is evaporated on any route

traversed by ants making that route slightly less desirable. The local rule is:
7, =(-4)*r, +{7, (5.16)

where 19 is the initial amount of pheromone on routes and ( is local evaporation rate.
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All these improved AS methods have been successfully applied to a number of
benchmark combinatorial optimization problems (Dorigo and Di Caro, 1999; Stiitzle

etal., 2010).

5-5-2 Review of Existing Multi-objective ACO Methods

Several issues need to be addressed when adapting ACO to multi-objective
optimization including the number of pheromone and heuristic matrices and the
pheromone updating procedure. The fact that there is considerable choice has resulted
in a wide range of published multi-objective ant colony optimization (MOACO)
methods (Marti'nez et al., 2007; Angus and Woodward, 2009). In this section, the
main features of existing methods are described and their potential drawbacks

highlighted.

Most MOACO approaches are extensions of well-known single objective ACO
methods. For example, Baran and Schaerer (2003) and Doerner et al. (2003) adapted
the Ant Colony System (ACS) while Bui et al. (2008) adapted the Ant System (AS).
Although MOACO methods differ in detail, all share the following common steps:

Step 1: Initialize parameters

Step 2: Construct solutions

Step 3: Find and archive non-dominated solutions
Step 4: Update pheromone

Step 5: Go to step 2 if the termination condition is not satisfied

Generally MOACO methods can be categorized according to their number of
pheromone and heuristic matrices (Marti'nez et al. 2007; Angus and Woodward
2009). Iredi (2001) proposed an approach for bi-criterion optimization problems
which uses cooperative ant colonies and multiple pheromone and heuristic matrices.
Doerner and Gutjahr (2004) and Cardoso et al. (2003) developed the Pareto ant
colony optimization (P-ACO) and multi-objective network optimization based on
ACO (MONACO) respectively with a single heuristic matrix and several pheromone
matrices. In contrast, crowding population-based ant colony optimization (CPACO)
and multiple ant colony system (MACS) methods were applied with multiple

heuristic matrices and a single pheromone matrix (Baran and Schaerer, 2003; Angus,
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2007b). Indeed, in these methods, diversity is achieved across the Pareto front
through the use of heuristic rather than pheromone information. McMullen (2001),
Gravel et al. (2002) and T'Kindt et al. (2002) developed methods which used a single

pheromone and a single heuristic matrix.

In some of above methods, a single ant colony was used (Doerner and Gutjahr,
2004; Alaya et al., 2007), while in the other methods, multiple colonies were used
(Iredi, 2001; Baran and Schaerer, 2003; Doerner et al., 2003). The main reason for
having multiple colonies is to treat objectives independently. Doerner et al. (2003)
introduced COMPETants with multiple colonies. Each colony corresponds to an
objective. One drawback of this approach is that by allowing ants to explore
individual objectives independently, they are more likely to explore the extremes of
the Pareto front and neglect the compromise trade-off points. For this reason Doerner
et al. (2003) introduced the spies idea to facilitate sharing and exchanging
information between colonies. In a similar way, Alaya et al. (2007) used multiple ant
colonies with each colony dedicated to a single different objective using its own
pheromone and heuristic information to build solutions. To avoid exploring extremes
of Pareto front they introduced an extra colony that aims at optimizing all objectives.
They compared four MOACO methods with different numbers of colonies and
pheromone matrices and found the method using a single colony and multiple
pheromone matrices performed best. Other researchers used multiple colonies for
other purposes. Iredi (2001) used multiple colonies with the aim of forcing ants to
find good solutions along the whole the Pareto front. The Iredi (2001) approach is
different from Alaya et al. and Doerner et al. in that he used multiple pheromone
matrices in each colony. This approach is conceptually similar to having a single ant
colony with multiple start points but it is different because altered weights have been

applied in each colony to weight the pheromone and heuristic information.

Except in the case of multiple colonies where each colony has its own
pheromone and heuristic information, it is necessary to integrate multiple pheromone
or heuristic matrices in the transition rule. There are two methods for integration,
namely weighted product (Iredi 2001; Baran and Schaerer 2003; Cardoso et al. 2003;
Angus 2007b) and weighted sum (Doerner et al. 2003; Doerner and Gutjahr 2004).
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In the weighted product method the transition rule is defined as:

I O VUG
- N
p | NG I BRUA G

= (5.17)

i

where L is the number of pheromone matrices, M is the number of heuristic
information matrices and the w; and wy, are pheromone and heuristic information

weights respectively.

In the weighted sum method the transition rule is defined as:
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When applying either the weighted sum or weighted product approach the main
challenge is to maintain diversity along the Pareto front. For that reason in the
literature different approaches have been proposed to define weights. Iredi (2001)
developed an approach that changed weights dynamically according to the following

equation:

wW=—-

k-1
m—1 (5.19)

where w is the weight for ant k and m is the number of ants.

Doerner and Gutjahr (2004) in P-ACO assigned a set of weights randomly at
each iteration for each ant. Alaya et al. (2007) did not apply weights. However, since
at each iteration a randomly selected objective was optimized, they implicitly applied
binary weights (0 or 1). Angus (2007b) used the average-rank-rate method in which

higher scoring objectives were assigned a greater weighting.

The use of different approaches to set weights can result in different search
behaviours (Lopez-Ibaiiez et al., 2004). The increase in required memory associated
with multiple pheromone matrices can be of concern if the actual problem size is

sufficiently large (Angus and Woodward 2009). Most of above mentioned approaches
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were applied to bi-objective cases. Thus, there is little guidance on application of

these approaches to problems with three or more objectives.

One of the challenging aspects of MOACO is the definition of a heuristic
information matrix. This is problem-specific and not necessarily easy to establish
(Doerner et al., 2003; Coello Coello et al., 2007). Developing a proper heuristic
information matrix is likely to be even more challenging in a multi-objective setting

because of the need to define heuristic information for every objective.

One of the most important steps of MOACO is the pheromone update. This
involves two considerations that affect performance. The first is the selection of the
routes to be updated and the second is the amount of pheromone to be deposited on

the selected routes.

Several approaches have been proposed in the literature for selecting routes. The
selected routes may be based on the non-dominated solutions within an iteration
(Iredi, 2001), the non-dominated solutions found so-far (Baran and Schaerer, 2003;
Alaya et al., 2007; Afshar et al., 2009) or the best (and the second-best) solutions
according to each objective (Doerner and Gutjahr, 2004). Bui et al. (2008) compared
several pheromone updating methods including updating based on all solutions from
the current iteration, non-dominated solutions in the current iteration, and non-
dominated solutions of all iterations. Their conclusion was that updating the non-
dominated solutions of all iterations outperformed other updating methods. This
finding is consistent with the good performance of the elitism strategy in single

objective optimization.

However, a drawback of updating non-dominated solutions found in all iterations
is that adding pheromone to these routes continuously may induce premature
convergence and thus prevent the algorithm from generating an even coverage of the
Pareto front (Angus and Woodward 2009). To abate loss of diversity, several
methods have been suggested in the literature. Angus (2007b) used dominance
ranking according to a non-dominated sorting technique to produce an even coverage
of the Pareto front. Alaya et al. (2007) updated the pheromone value of a route only
once despite how many solutions contain it. Bui et al. (2008) introduced an aging

factor to deal with this issue. The main idea is to deposit more pheromone on routes




Chapter 5 142

associated with more recent solutions in the archive of non-dominated solutions.

They defined the age factor (AF) as:

AF = !
Current iteration number —iteration number solution added to archive+1

(5.20)

A variety of pheromone updating methods has been developed. In a single
objective ACO minimization problem, pheromone is updated according to the inverse
of objective function value - that is, depositing more pheromone on routes with the
smaller objective function values encourages ants to follow those routes. Several
researchers have tried to extend this idea to multi-objective problems. Baran and
Schaerer (2003) used the inverse of the product of two objective function values for
updating pheromone. A drawback of this method is that the amount of pheromone can
be very sensitive to the objective value. This can cause premature convergence. Alaya

et al. (2007) used the following equation to update pheromone.

1

At'(c)= 1+ £,(S" - £(S...)

(5.21)

where Ati(c) is the quantity of pheromone deposited on a route (c) at the i iteration,
fi(S i) is the value of an objective function for the current iteration and f;(S},g;) is

the value of the best solution found so-far. Indeed, in Eq. (5.21) the value of At!(c) is

scaled between 0 and 1.

To avoid the drawbacks associated with objective-dependent updating
pheromone approaches, several researchers introduced updating methods independent
of the objectives. Iredi (2001) suggested an updating rule where every ant is allowed
to update the amount of pheromone equal to 1/ where L is the number of ants that
are allowed to update in the current generation. Doerner et al. (2003) updated
pheromone for only a number of the best ants ranked according to solution quality.
They deposit pheromone based on the ant’s rank. In a similar way, Angus (2007b)
updated pheromone based on the ant’s ranking. He used dominance ranking
according to a non-dominated sorting approach such as that of the NSGA-II

algorithm. Lopez-Ibafiez et al. (2004) suggested all ants deposit a constant amount of
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pheromone. Similarly, Doerner and Gutjahr (2004) used a constant amount of 10 and

5 for the best and the second best ants respectively.

5-5-3 Towards An Improved MOACO Algorithm

There are several studies (Marti'nez et al., 2007; Angus and Woodward, 2009;
Lopez-Ibafiez and Stiitzle, 2010) which have sought to investigate all existing
MOACO methods. However, these studies have mainly considered a particular
combinatorial problem such as the travelling salesman problem (Lopez-Ibanez and
Stiitzle 2010). As a result, it is difficult to these findings in urban water management

applications.

The review of existing MOACO methods in the preceding section showed that
there are several important aspects that need to be addressed in MOACO algorithms.
These include the number of heuristic and pheromone matrices, the transition rule, the
pheromone updating procedure and the specification of heuristic information. To
investigate the importance of each of these aspects, fifteen MOACO variants are
constructed from the review of existing MOACO methods. These variants are
compared against each other, using the benchmark problems and the Canberra case

study with two and three objectives.

In the interest of brevity, the details of these variants and the findings are
presented in Appendix A. Here the focus will be on the best of these variants and on
further enhancement. Out of the variants investigated, the variant called MOACO-
State appeared to best explore the search space regardless of number of objectives

and objective scales. The main features of MOACO-State are as follows:

1. Use a single colony with a single pheromone matrix regardless of the number of
objectives. This avoids the complexity of colonies communicating in the search

process and also avoids the need to assign weights.

2. Do not use problem-specific heuristic information by setting B to zero in Eq.

(5.11). This ensures MOACO-State is problem-independent.

3. Apply a constant amount of pheromone (C) when updating routes corresponding

to non-dominated solutions to maximize diversity in the Pareto front. This is
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motivated by the fact that all the points on the Pareto front should be treated

equally.

4. Use the MAX-MIN AS method with 7, defined by:
Toax = < (5.22)
P

5. Introduce a pheromone aging factor to reduce the chance of premature

convergence. This is accomplished using the following pheromone update :

C
AT=— (5.23)
AF
where AF is the number of iterations since the current non-dominated solution

was added to the archive as described in Eq. (5.20).

Figure 5-10 presents pseudo code for the MOACO-State algorithm. It provides a

reference point for the next section which explores ways of enhancing this algorithm.
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Assign parameters /*Number of decisions, Number of objectives, Number of segments (N), Number of ants,
Initial pheromone (ty), pheromone deposit (C), evaporation rate (p), a, B, avg, Ppest */

Calculate /*Trmay, Tmin */
For i= 1 to number of decisions do
For j = 1 to number of segments do
Create a route from decision i to decision i+1 (R;;) (Link method)
End for

Initialization

End for
Initialize pheromone trail /*put initial pheromone ( 7, ) on all routes*/

Initialize archive of non-dominated solutions found so-far (ND) = {¢$}

While stopping criteria is not met do
/*a sufficient good fitness or a maximum number of iterations or no results improvements after
a specific number of iterations*/

For all ants do
For all decisions do
Select the route based on probabilistic transition rule Eq. (5.11)
End for
Assign decision values to solutions based on the route traversed by the ant
End for
For all solutions do
Evaluate the objective function values corresponding to the solution
If (new solution dominates any in ND ) then
Delete dominated solutions
Add the new solution to ND
Else if (none of ND dominate the new solution) then
Add the new solution to ND
End if
End for
Evaporate pheromone of all routes
For all ND do
Calculate aging factor (Eq. (5.20))
Calculate Az (Eq. (5.23))
Update pheromone trail for the solution
End for
For all decisions do
If (oheromone trail< 1,,,) then
pheromone trail = Ty
Else if (pheromone trail>1,.,) then
pheromone trail = Trax
End if
End for

End while

Solution
construction

Evaluation

Updating pheromone

Print set ND

Output

Figure 5-10 Pseudo code for MOACO-State algorithm
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5-5-4 Towards a More Efficient MOACO Algorithm

Comparison of MOACO-State against other MOO methods, reported in
Section 5-6, revealed that MOACO-State was outperformed by the other methods.
This prompted a careful assessment of the factors affecting the rate at which
MOACO-State converged to the Pareto-optimal front. The ensuing insights led to the
development of superior methods called EMOACO and EMOACO-I, which are

described in this section.

The way pheromone is updated in MOACO algorithms has a major effect on
performance. In the absence of heuristic information, the pheromone update assumes
an even more important role balancing exploration and exploitation. In MOACO-
State it was found that the amount of pheromone on all routes was decreased to a
small value, except for the limited number of routes belonging to the current non-
dominated solution set. To illustrate this, the amount of pheromone on all segments
for the first decision for a range of evaluation numbers is shown in Figure 5-11. This
figure shows that only a limited number of segments, which belong to non-dominated
solutions, have high pheromone. As a consequence, ants mostly explore routes
belonging to the non-dominated solutions resulting in a very narrow exploration of
the search space. While this behaviour impedes the convergence rate, it does offer an

opportunity for improvement.
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Figure 5-11 Amount of pheromone on segments for the first decision after 2000,
4000, 6000, 80000 and 10000 evaluations (for Canberra case study with two

objectives)

To improve MOACO-State performance several ideas are adapted from
evolutionary algorithms. It is worth stressing that the methods developed in this
section are not hybrid GA-ACO methods since they do not use any GA or other

evolutionary algorithm steps in any part of their algorithm.

It is widely accepted that the mutation operator in evolutionary algorithms helps
avoid the algorithm being trapped at local minima and fosters diversity (Srinivas and
Deb, 1994; Deb et al., 2002a). To facilitate this feature in MOACO, the following
route selection process is proposed. For ant k and decision i, the route 1y is selected
using:

Randomly select one of the N, routes if g<gq,

r, = (5.24)
Select route applying Eq.(5.11) otherwise

where N; is number of routes available for decision 1, qo is a parameter in the interval

(0,1) and q is a random sample from a uniform distribution over the interval (0,1).
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A key feature of genetic algorithms is the crossover operator which allows, for
much of the time, exploration of the search space in the neighbourhood of the parent
decisions. This motivated the introduction of the adjacency concept in pheromone
updating as a way of mimicking the ability of the crossover operator to explore the
search space. The adjacency concept is implemented by depositing pheromone on
routes adjacent to the current non-dominated solution routes. For decision i, the
proximity of route (i, j) to the nearest non-dominated route is given by its adjacency
score k, defined as [j-j*| where (i, j*) is the closest non-dominated route to route (i, j).

The pheromone deposit on route (i, j) then becomes

C
(AF)

if (i, j) has an adjacency scorek =0

if (i, j) has anadjacency score0 <k <k, andu <P,

¢
T (AF)(1+k)

0 otherwise (5.25)

where u is a random uniformly distributed number over the interval (0,1), Pyq; is the
adjacency probability which determines the probability of depositing pheromone on

an adjacent route and k. is the maximum number of adjacent routes.

It was found that the adjacency pheromone update improved convergence to the
Pareto-optimal frontier as long as new solutions were being added to the set of non-
dominated solutions. However, the longer it took to find a new non-dominated
solution, the greater was the likelihood of stagnation. To overcome this problem, the
strategy of revisiting and mutating one of the current non-dominated solutions was
introduced. The strategy commences when the number of iterations during which no
new non-dominated solution is added, exceeds a predefined value, Nolmprovement.
One of the current non-dominated solutions is then selected randomly and one of its
decisions is changed randomly. This procedure continues until a new non-dominated
solution is found. The Nolmprovement value is defined as the number of iterations
required to reduce pheromone by evaporation from Ty,,4 t0 Tjpin- It can be shown to

be:
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(avg _l)n p est
log(~—>— e

p best

Nolmprovement =

log(1-p) (5.26)

Adding these enhancements to the MOACO-State method results in a more

efficient multi-objective ant colony optimization method hereinafter referred to as the

EMOACO algorithm. To summarize these changes more formally Figure 5-12
presents the pseudo code for EMOACO.

EMOACO, like all other MOACO methods, randomly selects the initial routes
traversed by each ant. The rate of convergence is affected by how close these initial
routes are located to the Pareto-optimal routes. With this in mind, the following
simple heuristic was adopted: EMOACO starts with the decision space being split
into 8 rather than 256 segments — this reduces the number of decision combinations
and thus improves the chance of EMOACO finding routes in the neighbourhood of
Pareto-optimal solutions. Once a predetermined number of evaluations (500 in this
study) is completed, the routes of the current non-dominated solutions are mapped, as
initial routes, to the final search space where the number of segments for each
decision is substantially increased (256 segments in this study). This enhancement to

EMOACO is referred to as EMOACO-I.
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Assign parameters /* adjacency probability(P.q), Number of decisions, Number of objectives, Number of
segments (n), Number of ants, Initial pheromone (t,), pheromone deposit (C), evaporation rate (p), Number of
adjacency routes (Knax), mutation rate (qo), avg, Ppest/*

Calculate /* Tax, Tmin, Nolmprovement */

For i= 1 to number of decisions do

[
'% For j = 1 to number of segments do
% Create a route from decision i to decision i+1 (R;)
= End for
<= Endfor
Initialize pheromone trail /*put initial pheromone ( 7, ) on all routes*/
Initialize archive of non-dominated solutions found so-far (ND) = {¢}
Initialize Count =0 /*count number of iterations without any changes in ND */
While stopping criteria is not met do
/*a sufficient good fitness or a maximum number of iterations or no results improvements after a specific number of
iterations*/
N = -1 /*flag changes in ND */
For all ants do
If (Count > Nolmprovement) then /*revisiting solutions */
Chose randomly one of the solutions in ND
Change randomly one of its routes
Save the changed solution as a new solution
.5 Else
§ For all decisions do
= Select a random number between 0 and 1 (r)
§ If (I’ < qo) then /* mutation */
g Select route randomly
L= Else
33, Select route based on probabilistic transition
rule Eq. (5.24)
End if
End for
Assign decision values to solutions based on the route
traversed by the ant End if
End for
For all solutions do
Evaluate the objective function values corresponding to the solution
If (new solution dominates any of ND ) then
Delete dominated solutions
Add the new solution to ND
N=0 /*flag changes in ND */
- Else if (none of ND dominate the new solution) then
2 Add the new solution to ND
L:sts N=0 /*flag changes in ND */
L%’ End if
End for

If (N <> 0) then /* No changes in ND */
Count=Count+1

Else
Count=0
End if
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Evaporate pheromone of all routes

For all ND do
Calculate aging factor (Eq.(5.20))
Calculate Az (Eq.(5.25))
Update pheromone trail for the solution
For all decisions do

% Select a random number between 0 and 1 (r)
g If (r < Padj) then /* adjacency */
) Add pheromone to adjacency routes (Eq.(5.25))
s End if
_E’ End for
§ End for
s For all decisions do
If (oheromone trail< 1,,,) then
pheromone trail = tmi,
Else if (oheromone trail>1,,,) then
pheromone trail = Tra
End if
End for
End while
5
%‘ Print set ND
(@]

Figure 5-12 Pseudo code for EMOACO algorithm

5-6 Evaluation of MOO Algorithm Performance

This section evaluates the performance of three benchmark MOO algorithms,
NSGA-II, eMOEA and SMPSO, and three MOACO methods, MOACO-State,
EMOACO and EMOACO-I. The primary objective is to identify the most efficient
algorithm for urban water resources problems for a relatively small number of
evaluations — this is motivated by the fact that function evaluations for urban water
resource problems are computationally expensive. This section is organized as
follows: First, the parameters of all six MOO methods are tuned. Then the
performance of these methods is compared using the three metrics described in

Section 5-3 for the Canberra and Sydney case studies.

5-6-1 Tuning

In this section the six MOO methods are tuned to obtain “good” parameters to
ensure a fair comparison. To ensure consistency across methods, binary coding with 8
bits (equivalent of 256 segments) and the same number of evaluations, i.e. 10000,

were used. All methods were run 10 times with different initial random number seeds.
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Poest N Eq. (5.14) was set to 0.05 (Stiitzle and Hoos, 2000). Polynomial mutation and
uniform crossover operators were applied to SMPSO and NSGA-II respectively. One-
point crossover with bitwise mutation was used in eMOEA with an initial population

of 100.

The parameters of the six MOO methods are listed in Table 5-6. To ensure all six
methods were compared in a fair manner, a structured search was used to optimize
the performance metrics using a related problem, namely the two-objective Canberra
system simulated between 1970 and 1990. For each method, a set of default
parameters based on values recommended in the literature was adopted. Then a range
of values for each parameter was generated by perturbing the default values. A
combination of tuning parameters was formed by selecting a value for one parameter
from the available range while keeping the other parameters at their default values.
These combinations are described in Table 5-6 . The notation “Id” and “n” are used in
this table to express the combinations. “Id” represents the name of a method, eg “E”
denotes EMOACO method, and “n” shows the combination number. Finally, the
performance metrics for up to 2000 evaluations were evaluated for different
combinations of tuning parameters to identify the best set of tuning parameters for
each method. The results of the HVR and convergence measures of all combinations
for all methods are presented in Figure 5-13 to Figure 5-17. In the case where no
combination of tuning parameters was superior over all evaluations, the combination
which had the best HVR was selected on the grounds that HVR assesses both
proximity and diversity while the convergence measure only assesses proximity. Both
the HVR and convergence metrics require knowledge of the approximate Pareto-
optimal front. For the purposes of this study, the reference or “true” Pareto-optimal
set was obtained from the Pareto-optimal set extracted from 60 runs, obtained from
10 runs for each the six MOO methods with each run involving 10,000 evaluations.

The reference set will be referred to as the “true Pareto front” or TPF.

Table 5-6 summarizes the adopted parameters for each method. As only a
limited number of combinations for each method were explored, there is a distinct
possibility that the best set was not identified. Because EMOACO and EMOACO-I
had 7 parameters for which only 20 combinations were tested, it is more likely that a

better set of parameters was found for the non-EMOACO methods. Therefore, the
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tuning procedure intrinsically favoured better outcomes for the non-EMOACO

methods. It is acknowledged that the structured search is premised on the assumption

that there is little interaction between parameters. As most of the tuned parameters

were at the default literature values, this issue is considered to be of secondary

importance.

Table 5-6 Summary of parameters used in the six MOO methods

Method Parameter Default Range of values used in Number of | Tuned
Value tuning(presented number in parameter value
Figures) combinations
tested
EMOACO | Number of 1 1(E1); 2(E2); 5(E3); 10(E4) 20 1
and ants
EMOACO-I p 0.02 0.05(E5);0.1(E6);0.5(E7) 0.02
C 10 5 (E8); 20(E9) 10
Ty 20 10(E10); 30(E11); 1,,x(E12) 20
Kinax 5 2(E13); 10(E14) 5
Pugi 0.05 0.01(E15); 0.1(E16) 0.05
do 0.005 0(E17); 0.01(E18); 0.05(E19); 0.1
0.1(E20)
MOACO- | Number of 1 1(M1); 2(M2); 5(M3); 10(M4) 12 1
State ants
p 0.05 0.02(M5); 0.1(M6); 0.5(M7) 0.02
C 10 5(M8); 20(M9) 10
Ty 20 10(M10); 30(M11); T,,.x(M12) 30
SMPSO Swarm 100 100(S1); 50(S2); 200(S3) 8 100
size
Archive 100 50(S4); 200(S5) 100
size
P utation 1/number 0.005(S6); 0.05(S7); 0.1(S8) 0.005
of
decisions
NSGA-II Prossover 0.9 0.9(N1); 0.95(N2); 1(N3) 8 0.9
Puutation 0.005 1/length of string (N4); 0.005
0.015(N5); 0.05(N6)
Population 100 S50(N7); 200(N8) 50
eMOEA Perossover 1.0 1.0(T1); 0.95(T2); 0.9(T3) 9 1.0
Putation 0.005 0.01(T4); 0.015(T5); 0.05(T6) 0.01
Pioversion 0.005 0.01(T7); 0.015(T8); 0.025(T9) 0.005
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Figure 5-13 Results of EMOACO tuning as a function of number of evaluations for

Canberra case study minimizing two objectives: present worth cost and restriction

frequency (a) Convergence measure (b) HVR measure




Chapter 5 155

12

MOACO-State

(a)

Convergence measure

0 2000 4000 6000 8000 10000 12000
Number of evaluations

12

MOACO-State

(b)

0.2

0 2000 4000 6000 8000 10000 12000
Number of evaluations

Figure 5-14 Results of MOACO-State tuning as a function of number of evaluations
for Canberra case study minimizing two objectives: present worth cost and restriction
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5-6-2 Results and Discussion

In this section, results of six MOO methods are evaluated. All methods applied
with tuned parameters were obtained in the last section. The first employed case study
is Canberra water supply system. To investigate the performance of these six MOO
methods for a more complex system another case study namely Sydney water supply
system also is employed. Moreover, since MOO methods are tuned to the Canberra
case study, applying these methods in the Sydney case study will test capability of
these methods more. Presented measures in this section are the average of obtained

measures from 10 runs.

5-6-2-1 Case Study — Canberra Water Supply System: Two objectives

Figure 5-18 shows a plot of the convergence measure for the six MOO methods
against a range of function evaluations for the Canberra system minimizing restriction
frequency and present worth cost. EMOACO-I unequivocally outperforms the other
methods demonstrating very rapid convergence. eMOEA is the best method among
non-ACO methods. This graph clearly shows that the ranking of the methods varies
as the number of function evaluations changes; for instance, NSGA-II outranks
SMPSO and MOACO-State after 2000 evaluations. Figure 5-19 presents a similar
plot for the HVR metric. Once again, EMOACO-I outperforms the other methods
except when the number of evaluations is 5000. EMOACO and eMOEA are ranked
as second best. Again this graph shows changes in rankings as the number of
evaluations progress; for example, the rank of SMPSO is four after 5000 evaluations
but climbs to two after 10000 evaluations. Figure 5-20 shows a plot of the I+ measure
for the six MOO methods. This plot shows even more variation in the ranking
highlighting the sensitivity of this measure. Except for 1000 evaluations, eMOEA is
the best method. Interestingly, all non-ACO methods continue to improve as the

number of evaluations increase.
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To elaborate more on the difference between non-dominated solutions of each
method and how the three measures reflect these differences, the results of the six
methods are compared in Figure 5-21 for the first run after 1000 evaluations. This
figure shows that EMOACO-I is the best method and MOACO-State is the worst in
terms of all three measures. The non-dominated solutions obtained for the best and
worse methods in terms of convergence measure are presented in Figure 5-22. This
plot shows clearly that the EMOACO-I solutions are closer to the TPF. The
convergence measures for EMOACO-I and MOACO-State are 0.087 and 0.358
respectively. It is noted that although the difference between the two convergence
measures is 0.271, the gap between the two non-dominated solution sets shown in

Figure 5-22 is considerable.

In Figure 5-23, the non-dominated solutions for the best and worse methods in
terms of HVR measure, EMOACO-I and MOACO-State methods are plotted. In this
figure the reference point is also shown. The area enclosed by green solid lines

represents the hypervolume of MOACO-State and the area enclosed by blue dashed
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lines denotes the hypervolume of EMOACO-I. The figure clearly indicates that
EMOACO-I has a larger hypervolume, which associates with better convergence and

diversity.

In Figure 5-24 two methods that have similar convergence measure value,
EMOACO and ¢éMOEA, are presented to demonstrate the difference between Ig:
measures for these methods. As discussed in Section 5-3, the I+ measure is sensitive
to outlier solutions. In Figure 5-24 the solution for each method that has maximum
distance from the TPF is marked by dashed circle. The I: value for eMOEA is larger
than for EMOACO because the outlined solution of this method is further from the
TPF.
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Figure 5-20 indicated failure of ACO-based methods to improve their
performance in terms of I¢. after 2000 evaluations. To elaborate more on this issue,
Figure 5-25 illustrates the ants’ exploration of the search space. In this figure the
number of evaluations is plotted against the value of the first objective obtained in
each evaluation. The pattern in Figure 5-25 shows ants explore the search space
locally; that is, they only explore only part of Pareto frontier at any one time. The
shortcoming of this is that the ants rarely explore part of the Pareto frontier that was
found in the early stages of exploration. In this particular case study, the outlined
point in Figure 5-24 was found in the early stages of exploration. This provides
insight as to why the I+ measure of EMOACO and EMOACO-I fails to improve for
evaluations beyond 2000.

0.9

Restriction frequency (First objective)
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Figure 5-25 Pattern of EMOACO search space exploration for the first run

To demonstrate the variability of the MOO methods, Figure 5-26 presents the
best of the 10 Pareto fronts for each method at 1000 and 2000 evaluations.
Figure 5-26(a) shows the Pareto fronts after 1000 evaluations. There is a gap,
considerable in places, between the NSGA-II, SMPSO and eMOEA Pareto sets and
the MOACO-based sets. In Figure 5-26(b) the Pareto fronts are presented for 2,000

evaluations in which it is observed that the Pareto sets have moved closer to the
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“true” set. However, the NSGA-II and SMPSO fronts appear to be dominated over
much of the front by the other methods. To highlight the differences between the
methods, the present worth cost at a restriction frequency of 0.1 for 1000 and 2000
evaluations is presented in Table 5-7. There is considerable variation between the
methods. For the 1000-evaluations case, the difference between the best and the worst

cost is $73.4 million, which is about 17% of the lowest cost of $428.4 million.
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To demonstrate the value of the initial phase in EMOACO-I, the EMOACO and
EMOACO-I Pareto fronts are compared in Figure 5-27 for a range of evaluations for
a randomly selected run. Recall that EMOACO uses 256 segments for each decision,
while EMOACO-I uses 8 segments for the first 500 evaluations and thereafter 256
segments. It can be seen that EMOACO required at least 1000 evaluations before its
Pareto front was in the neighbourhood of the Pareto front produced by EMOACO-I

after 500 evaluations. Although these results are for one run, they provide insight into

the performance of EMOACO-I. For computationally expensive evaluations, this

saving is particularly valuable.

Table 5-7 Best (out of 10 runs) present worth cost (3 million) for a restriction

frequency of 0.1 for the six methods

Evaluations | EMOACO-I | EMOACO | MOACO State | eMOEA | NSGA-II | SMPSO
1000 428.4 429.7 441.6 468.2 498.5 501.8
2000 416.7 416.2 426.1 430.7 485.3 459.0
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Figure 5-27 Pareto fronts produced by EMOACO and EMOACO-I for a single run
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The convergence, HVR and I.; metrics are based on the average obtained from
10 runs with different random seed numbers. This ensures that comparisons are not
significantly affected by sampling variability. However, it is insightful to compare the
inter-run performance variability of the six MOO methods. Table 5-8 summarizes the
standard deviation for the convergence, HVR and I.; measures over 10 runs after
completing 1000, 2000 and 3000 evaluations. MOACO-State exhibits the highest
variability for all metrics after 1000 and 2000 evaluations. The results confirm the
overall superior performance of EMOACO-I. Its convergence, HVR and I¢: standard
deviations are the lowest for 1000 and 2000 evaluations. For 3000 evaluations,
EMOACO-I is no longer superior in terms of convergence and HVR measures but
remains competitive. These results suggest EMOACO-I is more robust than the other
methods in the sense of its performance being less affected by choice of random

number seed.

Table 5-8 Convergence, HVR and I.standard deviations for 1000, 2000 and 3000

evaluations (the best is shown as bold italics and the worst is underlined)

MOO methods — %
! (@) = —
o %5 < - @)
Q ;
Q ! =3 195
< <
S1sl1glglg)|z
Number of E 0 o © z «
evaluations =
c 1000 0.023 | 0.057 | 0.095 | 0.058 | 0.116 | 0.089
onvergence 2000 0.009 | 0.024 | 0.071 | 0.024 | 0.037 | 0.031
standard deviation
3000 0.011 | 0.011 | 0.023 | 0.010 | 0.031 | 0.016
1000 0.011 | 0.046 | 0.085 | 0.029 | 0.054 | 0.029
HVR
.. 2000 0.012 | 0.012 | 0.044 | 0.014 | 0.024 | 0.017
standard deviation
3000 0.011 | 0.006 | 0.012 | 0.009 | 0.023 | 0.011
I 1000 0.136 | 0.228 | 0.286 | 0.203 | 0.215 | 0.239
= 2000 0.093 | 0.140 | 0.296 | 0.153 | 0.174 | 0.201
standard deviation
3000 0.093 | 0.145 | 0.278 | 0.119 | 0.188 | 0.114
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5-6-2-2 Case Study — Canberra Water Supply System: Three Objectives

The convergence, HVR and [+ metrics for the six MOO methods optimizing the
Canberra headworks system with three objectives are presented in
Figure 5-28 to 5-30. EMOACO-I has the best convergence metrics and eMOEA has
the best convergence among benchmark MOO methods. However, in contrast to
Figure 5-18, Figure 5-28 shows a greater variability between methods — even after
10,000 evaluations, there remain significant differences in the convergence measure.
The addition of the third objective, to which the MOO parameters were not tuned, has
made the optimization more challenging. With regard to the HVR metric, Figure 5-29
shows that EMOACO-I is superior up to 3000 evaluations but is then marginally
overtaken by all methods except MOACO-State. The poor HVR but satisfactory
convergence performance of MOACO-State is suggestive of its inability to fully
explore the decision space and the consequent loss of diversity. Indeed this confirms
earlier experience with MOACO-State and the motivation for EMOACO and
EMOACO-L. It is noted in Figure 5-30 eMOEA is clearly the best of all methods in
terms of I+ with EMOACO-I unambiguously ranked second.
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Figure 5-28 Convergence measure for six MOO methods as a function of the number
of evaluations for the Canberra case study minimizing three objectives: present worth

cost, restriction frequency and time storage less than 20%
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5-6-2-3 Case Study — Sydney Water Supply System: Two and Three Objectives

The MOO parameters, presented in Table 5-6, were tuned to the Canberra
system. In the Sydney case study, the performance of the MOO methods is evaluated
without any further tuning. All six MOO methods were run 10 times for 10,000

evaluations with different initial random number seeds.

Figure 5-31 through 5-33 present the convergence, HVR and I+ measures for the
six MOO methods for the Sydney case study minimizing two objectives, present
worth cost and restriction frequency. EMOACO-I has the best convergence measure
except for 1000 evaluations. With the exception of 1000 evaluations, SMPSO is the
best method among benchmark methods in terms of convergence. EMOACO-I
outperforms other methods in terms of HVR measure. SMPSO is the best method
among benchmark methods except for 1000 evaluations. Although Figure 5-33
indicates good I+ performance of eMOEA for 1000 and 2000 evaluations, SMPSO
overtakes eMOEA after 2000 evaluations. It also shows EMOACO-I is competitive

with these methods with respect to ..
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Figure 5-31 Convergence measure for six MOO methods as a function of the number
of evaluations for the Sydney case study minimizing two objectives: present worth
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Figure 5-35 HVR measure for six MOO methods as a function of the number of
evaluations for the Sydney case study minimizing three objectives: present worth cost,

restriction frequency and environmental stress

The Sydney three-objective case study reveals a significantly greater divergence
in performance among the methods. Figure 5-34 through 5-36 present the
convergence, HVR and I.; measures for the six MOO methods for the Sydney case
study minimizing three objectives, present worth cost, restriction frequency and
environmental stress. EMOACO and EMOACO-I are significantly superior to the
other methods for the convergence measure, but EMOACO-I did not perform well
after 1000 evaluations. eMOEA is the best of the benchmark methods. For the HVR
measure, EMOACO-I is clearly superior up to 2000 evaluations, after which SMPSO
and eMOEA marginally overtake it. Figure 5-36 illustrates the I+ measure for the six
methods. What is striking is the very poor performance of MOACO-State up to 4000
evaluations. The dramatic decrease of MOACO-State I+ value after 4000 evaluations,
not observed in the other metrics, highlights sensitivity of the I+ measure to outlier
solutions. As shown in the enlargement, eMOEA is the overall best method in terms

of I+ with EMOACO-I ranked overall as second at 2000 or more evaluations.
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Comparison of all six MOO methods in terms of the three measures for the four
case study combinations reveals that no one method unambiguously outperforms the
other methods. For instance, while EMOACO-I performed well in terms of
convergence and HVR measure for the two-objective Canberra case it did not
perform as well in terms of I.;. Similarly, eMOEA is the best method among
benchmark methods for three cases while SMPSO has better convergence

performance for the two-objective Sydney case.

The results clearly demonstrate the improvement of EMOACO and EMOACO-I
over MOACO-State. Indeed MOACO-State is among the worse methods in almost all
cases. It is also noted that NSGA-II was ranked last among the benchmark methods in
most of the cases and was particularly poor in the three-objective cases with respect

to the convergence measure.

5-7 Conclusions

The optimization of water resource systems in the presence of conflicting
objectives necessitates the use of multi-objective optimization methods. Modern day
MOO methods based on probabilistic methods require many thousands of objective
function evaluations. Unfortunately, these evaluations typically require running
simulation models, which for complex water resource systems, can be
computationally very expensive. Therefore there is a strong practical need for MOO
methods that converge quickly while maintaining diversity along the Pareto front.
Recently, a number of studies, mainly using evolutionary algorithms and particle
swarm optimization methods, have focussed on MOO methods that converge more
quickly. There is a strong practical motivation to identify which of these methods is

best suited to urban water management applications.

This chapter approached the task of identifying the best-suited MOO methods for

urban water resource applications in three steps:

1) A review of the literature was conducted to shortlist a number of existing MOO
methods for detailed evaluation. The criteria for selecting the methods were
evidence of good performance, uptake and availability of codes. The review

identified three benchmark MOO methods, NSGA-II, eMOEA and SMPSO.
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2)

3)

The good performance of ACO in finding optimal solutions in single objective
problems motivated investigation of its potential in multi-objective optimization.
As most multi-objective implementations of ACO have focussed on combinatorial
problems, the approach taken was to adapt existing ACO methods to develop a

MOACO algorithm suitable for urban water resource applications.

A review of the MOACO literature identified a number of shortcomings, the main
one being their problem-specific implementation. Based on this review, an
algorithm called MOACO-State method was developed incorporating the best
features of existing ACO methods whilst avoiding their shortcomings. Important
features of MOACO-State include the use of a single ant colony with one
pheromone matrix, a pheromone updating process independent of the number of
objectives and the scale of objective function values, and the elimination of
heuristic problem-specific information. However, it was found that MOACO-
State did not perform better than existing benchmark methods and was prone to

stagnation or premature convergence.

To improve MOACO-State’s performance, two concepts borrowed from
evolutionary search methods, namely adjacency and random selection, were
implemented in the ACO framework. Adjacency exploits the proposition that
potentially good solutions lie in the neighbourhood of current non-dominated
solutions. Random selection allows ants to visit routes with low pheromone. The
inclusion of these features in MOACO-State led to a new method called
EMOACO. Furthermore, the use of a simple heuristic to reduce the number of
decision combinations in the initial phase of EMOACO was added to accelerate

initial convergence. This method was called EMOACO-I.

To identify the best existing MOO methods for urban water resource applications
and to assess the performance of newly developed MOACO methods, a
performance comparison was conducted using two case studies based on the
urban headworks systems serving the Australian cities of Canberra and Sydney.
Each case study considered a two- and three-objective optimization problem with
about a dozen decision variables affecting infrastructure investment and system
operation. Three performance metrics were used to evaluate performance: i) the

convergence metric to assess proximity; ii) the hypervolume ration (HVR) metric
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to assess proximity and diversity; and iii) the I.; measure to assess consistency.

The comparison was conducted for function evaluations in the range 1,000 to

10,000.

For the non-MOACO methods, eMOEA and SMPSO had comparable
performance with NSGA-II ranked behind them. It was found that in most cases
EMOACO-I was the best performing method in terms of convergence and HVR
with EMOACO ranked second. With respect to the I+ metric EMOACO-I was the
best in one case and competitive in the other cases. It was observed that the I
metric was the most sensitive of the metrics, primarily because it focuses on

outliers on the non-dominated solution set.

Overall none of six MOO methods was superior in terms of all measures and for
all case study problems. However, it was clear that MOACO-State was the worst
performing method, a finding which vindicated the enhancements leading to the
EMOACO-I algorithm. Of particular interest was the greater variability in the
performance of the MOO methods when moving from two to three objective
problems and from the Canberra case study, for which MOO parameters were
tuned, to the more complex Sydney case study, for which the MOO parameters

were not tuned.
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A-1 Introduction

This appendix evaluates the performance of sixteen MOACO algorithms
(or variants) which are based on what appear to be the best features identified in the
review of existing MOACO methods. These variants enable systematic investigation
of the benefits and shortcomings of using single or multiple pheromone matrices in

transition rules and of using the different approaches in updating pheromone.

Table A-1 summarizes the fifteen MOACO variants (M1 to M15) plus the best
performing variant called MOACO-State. These variants are used to systematically
trial the algorithms that control the transition rule and pheromone updating. Three
methods for integrating multiple pheromone matrices into the pheromone transition
rule are considered: 1) weighted sum 2) weighted product and 3) random. Pheromone
updating involves two steps, determining the amount of pheromone to be deposited
and selection of the routes to be updated. Two methods are considered that determine
the amount of pheromone to be deposited: 1) scaled objective function value; and 2)
inverse of objective function values. Three methods are considered that determine
which routes are to be updated with pheromone: 1) select the non-dominated
solutions in the current iteration; 2) select the non-dominated solutions found in all

iterations; and 3) select the best routes according to each objective.

The transition rules based on weighted sum and weighted product are given by
Egs. (5.17) and (5.18). However, since no heuristic information is used, these two

equations can be simplified as follows:

Z(WITU)

Py=~ 1 N L

.2 (wry)"

im1 0=l (A-1)
P, = NH/ I(Tl])

ZH[ I(Tl] )aWI

i=1 (A-2)

The random transition rule is based on Eq. (A-1) but w; must be either 0 or 1 and
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A number of MOACO parameters were common to all the variants. The initial
pheromone (1¢) should bet set at a moderate value. If ¢ is too large it will take a long
time before ants explore good solutions, and if it is too small, search performance is
sensitive to early search outcomes (Dorigo and Stiitzle, 2004). Based on literature
values, Ty is set to 20. p and a are set to 0.02 and 1, respectively, which are the values
recommended by (Dorigo and Stiitzle, 2004). Py is set to 0.05 (Stiitzle and Hoos,
1996). The number of decision segments and number of ants were set to 256 and 10

respectively. The pheromone deposition constant C used in Eq. (5-23) was set to 10.

Table A-1 Summary of MOACO variants

. Amount of
. - Routes on which pheromone
Variant Transition rule . . pheromone
is deposited .
deposited
Mi Random Non-dominated solutions Scaled objectives
found so far
M2 Random Non-(.lor'mnate':d sol'ut1ons Scaled objectives
within an iteration
M3 Random Best of objectives Scaled objectives
M4 Weighted product Non-dominated solutions Scaled objectives
found so far
M5 Weighted product Non-('lomlnate':d sol'utlons Scaled objectives
within an iteration
M6 Weighted product Best of objectives Scaled objectives
M7 Weighted sum Non-dominated solutions Scaled objectives
found so far
M8 Weighted sum Non-c.lor.nmate.:d sol.utlons Scaled objectives
within an iteration
M9 Weighted sum Best of objectives Scaled objectives
MI10 Random Best of objectives Inyersg of
objectives
Mil Weighted product Best of objectives Inyersg of
objectives
MI2 Weighted sum Best of objectives Inyersg of
objectives
MI3 Random Non-dominated solutions In\./ers.e of
found so far objectives
. Non-dominated solutions Inverse of
Mi4 Weighted product found so far objectives
M5 Weighted sum Non-dominated solutions In\./ers'e of
found so far objectives
Constant with
MOACO- . . Non-dominated solutions .
State Single Pheromone using Eq. (5.11) found so far agmg(jj"azc;()))r (Eq.
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A-2 Results

In this section the performance of the fifteen variants M1 to M15 is summarized
for the six benchmark problems and for the Canberra case study with two and three
objectives. For each variant, 25,000 and 10,000 evaluations were performed on the
benchmark problems and Canberra case studies respectively. The primary goal of any
MOO method is to produce a diverse non-dominated solution set close to the true
Pareto front. Given that perspective and given the considerable number of variants to
be compared, it was decided in the interest of clarity to adopt a single performance
metric. HVR was chosen because, of the three metrics considered in this study, it is
the only one that evaluates both proximity and diversity. The goal of this approach is
to screen out the poorly performing variants and to identify the most promising one

for inclusion in the more rigorous assessment in Section 5-6.

As already noted, the variants are constructed to enable investigation of three key
aspects of MOACO methods. These deal with the selection of routes on which
pheromone is to be deposited, the amount of pheromone deposited on routes and the
number of pheromone matrices. In what follows, the variants M1 to M12 are first
compared to assess the impact on performance of route selection and the amount of
deposited. Then M1, M4 and M7 are compared against M13, M14 and M15 to
investigate further the role of the amount of pheromone deposited on routes. Finally
to assess the value of using single and multiple pheromone matrices, the M1, M4 and

M7 variants are compared with MOACO-State.

In Figures A—1 to A—10 the hypervolume measure for M1 to M12 is presented as
a function of the number of evaluations for the eight benchmark problems and the
two- and three-objective Canberra case studies. In all cases, M1, M4 and M7 are
found to be the best of the 12 variants. The feature common to these three variants is
that pheromone is updated on the non-dominated solutions found so-far. This finding
is in agreement with Bui et al. (2008). Indeed, although M1, M4 and M7 have
different transition rules, there is little difference in their hypervolume measures. This
suggests that the pheromone updating algorithm may be more important than the

transition rule.
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In some problems, the M2, M5 and M8 variants were ranked consistently as
second best. Common to these variants is that pheromone is updated on the non-
dominated solutions within an iteration. One of the drawbacks of this approach is that
non-dominated solutions within an iteration can be potentially far from the non-
dominated solutions found so-far. Moreover, the non-dominated solutions found in an
iteration can vary considerable between iterations. This may result in a more diffuse,

less structured exploration of the search space.

All of the variants that used the best-of-objective option to update pheromone
performed very poorly in the Canberra and ZDT4, ZDT6 and DTLZ6 problems. For
instance, for ZDT4, these variants reached stagnation after 5,000 evaluations, while
for the two- and three-objective Canberra problem, they stagnated after 2,000
evaluations. The main drawback of this updating approach is that because only the
routes associated with the best-of-objective routes are updated at each iteration, only
a limited number of routes is updated. For instance, in the case of two objectives only
two routes are updated. It is likely that the best-of-objective values and their
associated routes do not change over a number of iterations. This can quickly lead to
stagnation. In cases where the best-of-objective values vary among iterations this
approach performs better as in the case of ZDT1. When there are more than two
objectives it is likely there will be more than one route identified as having the best-
of-objective result for a particular objective. In such cases it is necessary to decide
which routes should be updated. This issue has not been addressed in the literature. In

this study, only one of the routes was randomly selected and updated.
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Figure A-1 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDTI
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Figure A-2 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDT3
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Figure A-3 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDT4
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Figure A-4 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem ZDT6
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Figure A-5 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ1
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Figure A-6 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ2
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Figure A-7 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ3

0.9

HVR

~—-M10

0.2

—A=M12

T T T '
5000 10000 15000 20000
Number of evaluations

25000

30000

Figure A-8 HVR measure for twelve variants as a function of the number of

evaluations for the benchmark problem DTLZ6
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Figure A-9 HVR measure for twelve variants as a function of the number of
evaluations for the Canberra case study minimizing two objectives: present worth

cost and restriction frequency
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Figure A-10 HVR measure for twelve variants as a function of the number of
evaluations for the Canberra case study minimizing three objectives: present worth

cost, restriction frequency and the fraction of time that storage is less than 20%
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In Figures A-11 to A-20 the hypervolume measure versus the number of
evaluations for M1, M4, M7, M13, M14 and M15 variants is presented for each of the
ten problems. These variants differ in terms of the amount of pheromone to be put on
the non-dominated so-far solutions. The M1, M4 and M7 variants update pheromone
based on the value calculated using Eq. (5.21) while M13, M14 and M15 update
pheromone based on the inverse of objective function values. It was observed that the
difference between the maximum and minimum amount of pheromone given by Eq.

(5-21) was small — the pheromone deposit was effectively constant.

The results for the benchmark problems show little difference among the six
variants. This is because the scale of the objective function values is not very large, so
the scale of the inverse of the objective function values is small. However, in the
Canberra problems, there are large differences in the scale of the objective function
values. As a result, greater differences in the performance of the variants are
observed. Figure A-19 shows that all three variants using the inverse objective
method, M13, M14 and M15, are worse than M1, M4 and M7. This difference is

starkly greater for the three-objective Canberra problem shown in Figure A—20.
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Figure A-11 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a

Sfunction of the number of evaluations for the benchmark problem ZDTI
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Figure A-12 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem ZDT3
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Figure A-13 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
Sfunction of the number of evaluations for the benchmark problem ZDT4
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Figure A-14 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a

function of the number of evaluations for the benchmark problem ZDT6
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Figure A-15 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
Sfunction of the number of evaluations for the benchmark problem DTLZ]
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Figure A-16 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ2
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Figure A-17 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
Sfunction of the number of evaluations for the benchmark problem DTLZ3
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Figure A-18 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a
function of the number of evaluations for the benchmark problem DTLZ6
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Figure A-19 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a

function of the number of evaluations for the Canberra case study minimizing two

objectives: present worth cost and restriction frequency
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Figure A-20 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a

function of the number of evaluations for the Canberra case study minimizing three

objectives: present worth cost, restriction frequency and and the fraction of time that

storage is less than 20%
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The results presented so far consistently show that the M1, M4 and M7 variants
outperform the other variants. However, these variants depend on the objective
function values in either the pheromone updating system or in the transition rule. To
assess the significance of being dependent on objective function values, the sixteen
variant, MOACO-State, is proposed with a single pheromone matrix and constant
value for updating pheromone on non-dominated solutions found so-far. In
Figures A-21 to A-30 the hypervolume measure of these three variants is compared

against MOACO-State for the ten problems.

For the benchmark problems, the performance of M1, M4 and M7 is similar to
that of MOACO-State, although MOACO-State would be judged to be superior. This
finding is in agreement with (Martinez et al. 2007) who concluded that the updating
process is more important than the number of pheromone or heuristic matrices. For
the Canberra problems, MOACO-State has once again similar performance similar to
the other variants, though in the three-objective problem, M4 and M7 perform
noticeably worse for 3000 or fewer evaluations. MOACO-State is judged superior to

M1, M4 and M7 for two reasons:

1) Because MOACO-State applies constant pheromone C regardless of the number

and scale of objectives, it is considered to be more robust.

2) Because the primary interest in this chapter is identifying MOO methods that
perform well for a limited number of evaluations, MOACO-State is judged to
have a slight edge over the other variants, particularly for the three-objective

Canberra problem.

For these reasons, MOACO-State is taken as representing the best fusion of

existing MOACO algorithm features.
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Figure A-21 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem ZDTI
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Figure A-22 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem ZDT3
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Figure A-23 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem ZDT4
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Figure A-24 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem ZDT6
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Figure A-25 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem DTLZ1
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Figure A-26 HVR measure for three variants (M1, M4 and M7) and MOACO-State as
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Figure A-27 HVR measure for three variants (M1, M4 and M7) and MOACO-State as
a function of the number of evaluations for the benchmark problem DTLZ3
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Figure A-28 HVR measure for three variants (M1, M4 and M7) and MOACO-State as

a function of the number of evaluations for the benchmark problem DTLZ6
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Figure A-29 HVR measure for three variants (M1, M4 and M7) and MOACO-State as
a function of the number of evaluations for the Canberra case study minimizing two

objectives: present worth cost and restriction frequency
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6-1 Introduction

The overall aim of this thesis was to produce multi-objective optimization
methods of greater practical relevance to urban water resource management. In

pursuit of this aim, three specific objectives were set:

1. Identify and address the shortcomings of existing multi-objective optimization

methods in urban water resources planning and operation;

2. Investigate the application of multi-objective optimization to scheduling and
scaling of options to efficiently and equitably manage the challenge of population

growth; and

3. Investigate the efficiency of multi-objective optimization search methods in the

urban water resources applications.

This chapter reflects on the contributions made in this thesis. It summarizes the
main findings with regard to each objective and then explores future research

directions.

6-2 Summary and Conclusions

In this section, the rationale for each of the three objectives is revisited followed

by a discussion of the major findings and their significance.

6-2-1 Moving Towards More Practical Multi-objective optimization

Methods For Urban Water Resource Systems

Urban water management requires making decisions in the presence of
conflicting objectives. The management of drought security in urban water supply is
typically tackled using a mix of short-term options that manage the immediate
response to drought and long-term options that control the risk of triggering the
drought contingency plan. However, the maximization of drought security conflicts
with other important objectives such minimizing economic cost and environmental
impacts. This, along with the potentially very large number of solutions available to a
water agency, makes multi-objective optimization a potentially very useful decision-

support tool.
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Review of past studies on the use of multi-objective optimization in water
resource applications identified several shortcomings in a number of practically
important areas. These include the following: 1) focusing exclusively on either long-
term (or infrastructure) options or on short-term options (such as operation rules or
drought contingency plans) may lead to sub-optimal solutions; 2) the use of short
hydro-climate forcing data time series in simulation models to evaluate drought
security can produce solutions that make the system highly vulnerable to severe
drought; and 3) the a priori setting of environmental constraints may hide trade-offs
between environmental, economic and security factors that are of considerable

interest to decision makers.

These shortcomings have been addressed by a new multi-objective methodology.
It exploits the ability of evolutionary algorithms to handle complex nonlinear
objective functions and to interface with complex simulation models. An important
contribution is the explicit treatment of drought security. The constraint is imposed
that no unplanned shortfalls in demand may occur during the simulation — an
unplanned shortfall would occur when the storages “run dry” or when there are
limitations on transfer capacity, resulting in a failure to meet the minimum water
needs specified in the drought contingency plan. Therefore, for an N-year simulation,
the optimization produces a solution capable of dealing with a drought with an
expected return period of N years. By using stochastically generated hydro-climate

inputs, it is possible to consider very high levels of drought security.

A case study based on the headworks system for Australia’s largest city, Sydney,
demonstrated the practical significance of these shortcomings and, importantly, the
ability of the new approach to deal with these shortcomings in a practicable manner.

The following conclusions can be drawn from this case study:

1) Optimizing either operating rules or infrastructure options runs the risk of
producing significantly inferior solutions. In the Sydney case study, there was
strong interaction between some of the operating rule and infrastructure decisions.
This highlights the importance of embedding an adequate simulation model in the
optimization framework to ensure that joint optimization of operating rules and

infrastructure options is possible.
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2) The Sydney case study demonstrated the very considerable sensitivity of Pareto-
optimal solutions to the expected return period of the severest drought. Indeed
where high levels of drought security are expected, the use of historic or short
stochastic hydro-climate records is fundamentally flawed leading to so-called
“optimal” solutions that render the “optimized” system highly vulnerable to

severe drought.

3) Environmental flow constraints are typically imposed on allocations within urban
the water resource systems. The a priori imposition of such constraints runs the
risk of missing potentially good solutions. It was shown in the Sydney case study
that system performance was sensitive to the level of environmental flow
constraints. Translating such constraints into objectives, difficult as it may be,
provides a rich set of trade-offs between economic, social and environmental

factors.

6-2-2 Efficient and Equitable Scheduling of Options to Cater For Future
Changes

In the face of urban population growth and the accompanying growth in water
demand, the performance of the urban water resource system is expected to
deteriorate over time. This will result in the need to intervene and adapt the system to

the changing conditions.

The scheduling capacity expansion problem seeks to identify the optimal
schedule for changes to operating rules and infrastructure. In past studies, this
problem has been largely tackled by minimizing the total present worth of capital,
operational and rationing costs. A significant drawback of minimizing the total
present worth cost is that it is likely to produce solutions that lead to more severe and

frequent rationing in the future. Such a solution is likely to be socially unacceptable.

A new multi-objective formulation for the scheduling capacity expansion
problem is developed to overcome this shortcoming while addressing the need to
explicitly deal with drought security and jointly optimize operating and infrastructure
decisions. The formulation enables the trade-off between cost and equity (the equal
sharing of the burden of restrictions over the planning horizon) to be explored and

deals with drought security by performing simulation using multiple replicates of
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future climate. A case study based on the headworks system for Australia’s capital
city, Canberra, was conducted to evaluate the merits of the new approach. The

following conclusions can be drawn from this case study:

1) It was shown that minimizing total present worth cost can lead to more severe and
frequent restrictions in the latter stages of the planning horizon. This unequal
sharing of the burden of water shortages would be seen as a politically and
socially-sensitive equity issue. A sensitivity analysis of the discount rate revealed

that the higher the discount rate the greater the inequity across planning stages.

2) The importance of jointly scheduling both operating rule and infrastructure
decisions was clearly demonstrated. By allowing decisions to adapt to the initial
state of the system and to the growth in demand, the total present worth cost was
reduced from $462 m (when all decisions were made at the start of the planning
horizon) to $444 m (when decisions could be made at any of the three change
points within the planning horizon). Indeed, in the Canberra case study, it was
found that virtually all the benefit of scheduling decisions over the planning

horizon could be attributed to the scheduling of operating rule decisions.

3) It was shown that formulating the scheduling capacity expansion problem as a
multi-objective problem enabled the trade-off between cost and equity to be
explored. The core idea was to introduce an objective which seeks to minimize
the difference in the cost of restrictions between the planning stages. This
produced a much richer, more relevant set of solutions for a decision maker to

consider.

6-2-3 Computationally Efficient Multi-objective Optimization Methods

Computationally expensive simulation models are typically used in urban water
resource applications to evaluate system performance. Simulation run times can range
from less than a minute to over thirty minutes. These long run times are considered an

impediment to the practical usage of MOO methods in urban water management.

The final objective of this thesis was to identify MOO methods that can produce

approximate Pareto-optimal solutions with a limited number of objective function
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evaluations. Three benchmark MOO methods, NSGA-II, eMOEA and SMPSO, were

selected among existing MOO methods for comparison.

The good performance of ant colony optimization (ACO) in single objective
problems motivated investigation of its suitability for multi-objective optimization in
the context of urban water management. A review of past work identified a number of
shortcomings in existing MOACO methods with the principal one being the problem-
specific nature of the algorithms. In this thesis, three MOACO methods were
developed to address these shortcomings and were compared against the three

benchmark methods using four urban water resource test problems.

The comparison of the six MOO methods using three metric that assessed the
convergence, diversity (hypervolume ratio) and consistency (I¢;) of solutions revealed
that none of the methods was superior but that two of the methods, NSGA-II and
MOACO-State, were inferior to the other methods. The EMOACO-I algorithm was
found to be the best method in terms of the convergence and hypervolume ratio
metrics but other methods produced better I; metrics. Out of the three benchmark
methods, none emerged superior — eMOEA was ranked first for three of the four
urban water resource test problems and SMPSO was ranked first for the fourth

problem.

6-3 Future Research Directions

While this thesis has made a number of significant contributions that make multi-
objective optimization more relevant and practicable in urban water resources

management, there remain many opportunities for further advancement.

The case studies for Sydney and Canberra mainly focused on decisions
associated with the headworks systems. However, there are considerable and
practically important opportunities to extend the scope of these studies to include a
much richer decision space. For example, the characterization of the drought
contingency plan could be extended considerably. The case studies in this thesis
limited rationing to domestic water use, when, in fact, there could be many more
stages in a drought contingency plan that would impose severer rationing on all water
sectors. It was shown that the total present worth cost for Sydney was sensitive to the

choice of drought return period. Likewise it is expected there is similar sensitivity to
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the way the drought contingency plan is managed in a severe drought. Another
opportunity lies in linking headworks or centralized solutions with decentralized
solutions (Chiou et al., 2007; Daigger and Crawford, 2007; Daigger, 2009) that
harvest water at the local urban scale. In the Canberra case study rainwater tanks were
included as one of the infrastructure options. However, the scope of decentralized
options is far greater including local stormwater harvesting and non-potable water
substitution using grey and blackwater sources. Apart from the policy relevance of
including decentralized options in Australian urban water supply, there are
considerable technical challenges dealing with sensible treatments of scale over time

and space.

The Fourth Assessment Report of the Intergovernmental Panel for Climate
Change indicates that climate change is likely to impact on water resources around
the world (Rosenzweig et al., 2007). In urban areas that are already vulnerable to
drought, a drying climate is likely to significantly compound the stress arising from
population growth (O’Hara and Georgakakos, 2008). Although the multi-objective
scheduling approach developed in Chapter 4 was motivated by the need to cater for
population growth, it is intrinsically suited to exploring the added stress of potentially
drying climates. Because the approach allows scheduling of decisions over time, it
provides a capable tool to explore adaptive management strategies provided, of
course, a sufficiently rich decision space is used. However, the challenges, both

technical and computational, would be considerable.

Ensuring practicable computational turnaround times for multi-objective
optimization applications in urban water resources remains a formidable challenge.
Generally there are three strategies to deal with computationally-intensive
optimization problems: 1) use parallel computing; 2) adopt more efficient
optimization methods; 3) and use meta-models to approximate the mapping between
the decision and objective function spaces. The third option was not explored in this
thesis but has received considerable attention in recent years. There is a strong case

for exploring this option in the context of urban water resources.

The opportunity to develop new multi-objective ACO algorithms was limited by
time constraints. There is clear scope to parallelize the ACO algorithms along the

lines reported by Stiitzle (1998), Manfrin et al. (2006), Koshimizu and Saito (2009)
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and Chen et al. (2012). There is considerable scope to exploit the use of tabu lists to
prevent ants exploring infeasible solution spaces. There is scope to better tune ACO
parameters. A number of studies have investigated the issue of tuning and the
adoption of adaptive tuning methods (Arabshahi et al., 1996; Zecchin et al., 2005;
Stiitzle et al., 2010; Randall, 2004; Pellegrini et al., 2012). Finally, there is scope to
improve the performance of the EMOACO and EMOACO-I algorithms with respect
to the I, measure by dealing with the clustering behaviour of ants as they sample

non-dominated routes.

In conclusion, while there is considerable scope for further work, this thesis has
made several original and significant contributions to produce multi-objective
optimization methods of greater practical relevance to urban water resource

management.
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