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Abstract 

The provision of a water supply that is secure in the face of severe drought is a 

primary objective for urban water agencies – “running out of water” is not a viable 

option for a large city. However, there are other objectives that conflict with the 

primary one – these include minimizing costs and environmental impacts. A major 

challenge facing decision makers in the urban water sector is dealing with the trade-

offs between these conflicting objectives. Multi-objective optimization methods have 

the potential to identify the optimal trade-offs between the competing objectives. The 

principal aim of this thesis is to address the shortcomings in existing multi-objective 

optimization applications to produce methods of greater practical relevance to urban 

water resource management. 

Review of past studies identified three practically significant shortcomings. 

Focusing exclusively on either long-term (or infrastructure) options or on short-term 

options such as operation rules may lead to sub-optimal solutions. The use of short 

climate forcing data time series in simulation models to evaluate drought security can 

produce solutions that make the system highly vulnerable to severe drought. Finally, 

the setting of a priori environmental constraints may hide trade-offs between 

environmental, economic and security factors that are of considerable interest to 

decision makers. These shortcomings are addressed by a new multi-objective 

methodology that exploits the ability of evolutionary algorithms to handle complex 

objective functions and simulation models. The principal novelty is the explicit 

treatment of drought security. A case study based on the headworks system for 

Australia’s largest city, Sydney, demonstrates the practical significance of these 

shortcomings and, importantly, the ability of the new approach to deal with these 

shortcomings in a practicable manner.  

In the face of urban population growth and the accompanying growth in water 

demand, the performance of the urban water resource system is expected to 

deteriorate over time. This will result in the need to intervene and adapt the system to 

the changing conditions. The scheduling capacity expansion problem seeks to identify 

the optimal schedule for the changes to the system. In past studies, this problem has 
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been largely tackled by minimizing the total present worth of capital, operational and 

rationing costs. A significant drawback of minimizing the total present worth cost is 

that it is likely to produce solutions that lead to more severe and frequent rationing in 

the future. Such a solution is likely to be socially unacceptable. A multi-objective 

formulation for the scheduling capacity expansion problem is developed to overcome 

this shortcoming while addressing the need to explicitly deal with drought security 

and jointly optimize operating and infrastructure decisions. The formulation enables 

the trade-off between cost and equity (the equal sharing of the burden of restrictions 

over the planning horizon) to be explored. A case study based on the headworks 

system for Australia’s capital city, Canberra, demonstrates the advantages of the new 

approach. 

The optimization of urban water resource systems requires running simulation 

models tens of thousands of times. Given that simulation run times can range from 

less than a minute to thirty or more minutes, it is important to use a multi-objective 

optimization method which converges with the least number of evaluations (or 

simulations). To address this need, a detailed assessment is conducted of three 

benchmark multi-objective optimization methods and three newly developed methods 

based on ant colony optimization using case studies based on the Canberra and 

Sydney systems. No one method emerges as superior, although two of the six 

methods are identified as inferior. 
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1-1 Decision Support in Urban Water Management  

The critical role of water in human society is incontestable. The development of 

many ancient civilizations close to water sources shows that humans have understood 

the importance of accessing water from early stages. The world’s population has 

nearly tripled during the last century while exploitable water resources have remained 

largely unchanged. Increasing population has resulted in greater demand for water to 

support agriculture and urban water supply. Likewise the unprecedented growth in 

industry has further increased water demand in many developed and developing 

countries (UN-Water and FAO, 2007). This thesis considers the question of how to 

best manage urban water resources in the face of growing demand. 

In an Australian industry position paper describing a framework for urban water 

resource planning, Erlanger and Neal (2005) state in the opening that: “A safe and 

reliable water supply system is of utmost importance to the community. It is expected 

and understood that water utilities manage their water resources so that communities 

never run out of water.” Erlanger and Neal recognize that failure to supply minimum 

water needs for an extended period would most likely result in disastrous social and 

economic losses that could conceivably threaten the very existence of the urban 

community. 

As an example of the challenges facing large urban centres, the water resource 

system supplying Sydney, Australian’s largest city, is considered. The system, 

schematized in Figure  1-1, is complex with 11 major reservoirs serving Sydney’s 

residential, commercial and industrial water demand. Its total capacity is more than 

2,600 GL (gigalitres). The agencies responsible for Sydney’s water supply have to 

deal with a number of future challenges including catering for a growing population, 

coping with high natural variability, future climate change and mitigating 

environmental impacts.  
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Figure  1-1 Sydney’s water supply system 

 (Source : http://www.sca.nsw.gov.au/publications/publications/water-supply-

diagram, last visit 05/05/2012) 
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Historical records indicate that Sydney’s climate is highly variable and subject to 

prolonged drought, even without consideration of future climate change impacts. This 

is illustrated by Figure  1-2, which shows that Sydney’s total storage dropped from 

90% in 2001 to nearly 35% in 2007 during the severe drought that affected much of 

eastern Australia.  

 

Figure  1-2 Sydney’s total reservoir storage level (New South Wales Dept. of 

Environment and Water, 2010) 

Sydney’s population is expected to reach 5.7 million by 2035 which represents a 

35% increase from 4.22 million in 2006. This population growth is likely to increase 

annual demand by 66 GL (New South Wales Dept. of Environment and Water, 2010). 

At the same time, the need to protect rivers and aquifers from environmental 

degradation has become a significant priority.  

The agencies responsible for Sydney’s water supply have available a range of 

options to tackle these challenges. The options involve either increasing supply by 

harvesting new sources of water or reducing demand by improving water use 

efficiency, pricing and rationing. As an example of the former, in 2007 when 

Sydney’s total storage level was around 35%, the state government approved the 

construction of Sydney’s first desalination plant as an emergency measure to reduce 

the risk of “running out” of water. With regard to demand reduction, annual demand 

has been reduced by over 100 GL since 1999 with the introduction of water efficiency 

programs. Moreover, several projects have been identified to increase recycled water 
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from 33 GL/year in 2010 to 70 GL/year in 2015 (New South Wales Dept. of 

Environment and Water, 2010). Water sharing plans have been revised to ensure 

rivers and aquifers receive adequate environmental water and are not overused. In 

some cases, such as the upper Nepean River, major upgrades to a number of dams 

and weirs were implemented to improve natural fish passage in the Hawkesbury-

Nepean River system (New South Wales Dept. of Environment and Water, 2010).  

While the provision of a safe and secure water supply is a primary objective for 

urban water agencies, there are other objectives that conflict with the primary one – 

these include, inter alia, minimizing costs and minimizing environmental impacts. A 

major challenge facing decision makers in the urban water sector is dealing with the 

trade-offs between these conflicting objectives. Each solution involving a specific 

mix of options that increase supply and/or reduce demand will produce different 

outcomes with respect to supply security, cost and environmental impact. For 

example, construction of the 500 ML/day desalination plant would increase supply 

security at a cost of $1.9 billion. Alternatively, supply security could also be 

increased by imposing more frequent and severe restrictions at probably a lower 

economic cost but higher social cost than construction of the desalination plant. Yet 

again, supply security could be increased by relaxing environmental constraints in the 

Wollondilly River to allow greater transfers from the Shoalhaven River to 

Warragamba – this gain in security would be offset by a greater threat to the survival 

of water-dependent fauna in the Wollondilly River. 

The challenges facing Sydney’s water agencies are typical of those facing urban 

water agencies both in Australia and internationally. In broad terms, these agencies 

have to find solutions that maximize security of supply while minimizing cost and 

minimizing environmental impacts. The number of solutions involving different 

combinations of infrastructure investments and different operating rules can be 

astronomic. The challenge of finding the best set of solutions is considerable. The 

conventional approach of employing a trial-and-error search over a limited number of 

solutions runs the significant risk of missing good solutions and the consequent 

opportunity cost to the community.  

Decision support systems are designed to assist decision makers to find good 

solutions. Of particular interest in this thesis is the use of multi-objective optimization 
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methods to sift through all feasible solutions to identify those solutions that optimally 

trade-off two or more conflicting objectives. These methods have seen application to 

urban water resources planning and management over the last two decades. However, 

as will be shown, there remain significant shortcomings that limit their true potential. 

1-2 Thesis Objectives 

The primary goal of this thesis is to develop and demonstrate multi-objective 

optimization (MOO) approaches, which address the shortcomings of existing 

methods in order to move closer to providing practical and realistic optimization of 

urban water resources. To this end, several specific objectives are pursued in this 

thesis: 

1. To address the shortcomings of existing multi-objective optimization in urban 

water resources planning and operation 

The practical value of MOO methods in urban water resources management 

depends on how well the optimization model represents the needs of the decision 

makers. Previous work in this area has fallen short in a number of practically 

important areas: 

a) The performance of an urban water resource system is jointly dependent on the 

mix of infrastructure and operating rule options. Focussing exclusively on either 

infrastructure options or operating rules may lead to sub-optimal solutions.  

b) Constraining objectives a priori may hide trade-offs of considerable interest to 

decision makers. For example, a priori specification of environmental flow rules 

can hide significant trade-offs between ecological, economic and security 

outcomes. Awareness of such trade-offs could result in communities willing to 

pay more in return for reduced environmental impacts.  

c) Provision of adequate drought security is a key objective. Reliance on relatively 

short historic data to evaluate supply security runs a very significant risk of 

producing a system highly vulnerable to severe drought. 

The first objective of this thesis has two components: 1) to formulate and solve 

the urban water resource optimization problem in a manner that better addresses the 
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practical challenges of working with solutions that involve a mix of infrastructure and 

operating rule options, realistically account for drought risk and identify the trade-offs 

between economic, supply security and environmental factors; and 2) to demonstrate 

that failure to address these challenges comprehensively results in “optimal” solutions 

that can be far from optimal and of limited relevance to urban water resources 

management. 

2. To extend application of multi-objective optimization to scheduling of options 

to cater for future changes 

The current world population of more than 7 billion is projected to reach 9.3 

billion by the middle of this century (UN, 2011). Much of this growth will be in 

urban areas driving the demand for more water. This situation may be further 

exacerbated by future climate change (Palmer et al., 2008). The literature on optimal 

scheduling of future decisions is limited and tends to focus on minimizing present 

worth costs and on infrastructure investment. One consequence of focusing on 

minimizing present worth costs is that the temporal discounting of costs tends to 

result in lowered future levels of service. For example, the optimal minimum cost 

policy may lead to more severe restriction/rationing of consumption in future stages, 

an outcome unlikely to be acceptable to decision makers sensitive to temporal equity. 

The second objective of this thesis is to extend application of MOO to scheduling of 

decisions on infrastructure investment and operating rules to cater for future changes 

with consideration of equity over the planning period. 

3. To identify and evaluate the most computationally efficient multi-objective 

optimization method for urban water resources application 

Water resources applications typically use computationally expensive methods 

for computing their objective functions (Pierro et al., 2009). For example, in one of 

the case studies presented in this thesis involving the Canberra water resource system, 

a 140-year simulation at monthly time steps takes approximately 2 CPU seconds. 

Hence, for an optimization involving 10,000 function evaluations, the turnaround 

time of nearly 6 hours is totally dominated by the simulation model rather than by the 

optimization algorithm. Urban water resource models typically use long stochastically 

generated records which can lead to simulation run times of the order of several 



Chapter 1  8 

 

minutes. These long run times are considered an impediment to the practical uptake 

of MOO. While parallel computing can reduce turnaround times (Cui and Kuczera, 

2005), there remains a strong imperative to develop MOO methods which not only 

converge to the Pareto-optimal front with good diversity but do so with the fewest 

possible function evaluations. This is the final objective of this thesis. 

There are two tasks to address the final objective of the thesis. The first is to 

identify and evaluate which of the existing MOO algorithms is best suited for urban 

water resource applications. The second is to explore the potential of a recently 

developed optimization method called ant colony optimization (ACO). The literature 

shows that ACO performs well for difficult combinatorial problems such as the 

travelling salesman problem. The challenge is to determine whether ACO can be 

successfully adapted to solve problems typical of urban water resources. 

1-3 Thesis Outline 

This thesis consists of six chapters. Chapter 2 presents an overview of simulation 

methods used in urban water resources and a review of existing MOO methods. It sets 

the scene for the following three chapters which represent the primary contribution of 

this thesis. Chapter 3 develops a MOO approach that addresses many of the 

shortcomings of existing applications and yet is computationally practicable. A case 

study involving the complex Sydney system demonstrates the benefits of the 

proposed approach. Chapter 4 considers the problem of optimally scheduling 

decisions over time from a MOO perspective. A case study involving the Canberra 

system demonstrates the advantages and insights that the MOO approach brings to 

this very difficult problem. Chapter 5 changes the focus from problem formulation to 

the algorithms that conduct the search for optimal solutions. It evaluates the 

performance of three benchmark algorithms using the Sydney and Canberra systems 

as exemplars of urban water resources applications and also investigates the potential 

of ACO. Chapter 6 concludes the thesis, summarizing its main findings and 

identifying future research directions.  
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2-1  Introduction 

Decision support systems facilitate the process of decision making by providing 

insight to decision makers about the consequences of implementing various options. 

Two important components of a decision support system are the simulation model 

and tools that support optimizing outcomes important to the decision maker. 

Simulation models allow investigation of system behaviour under historical and 

future scenarios. In particular, they assist in answering “what-if” questions. Thus, by 

trial and error improved operating and planning strategies may be found. However, in 

most real-world problems, there is a huge number of technically feasible solutions. It 

is, therefore, problematic whether a trial-and-error search can identify near optimum 

solutions. The success of a trial-and-error search is likely to be very dependent on the 

skill of the analyst. There is a significant risk of missing good solutions and the 

consequent opportunity cost to the community. This challenge has inspired the 

development of a range of optimization methods in the last few decades to optimize 

operating rules and investment decisions in urban water resources systems. Indeed, 

this challenge is the primary interest of this thesis.  

This chapter provides the necessary background for the ensuing chapters which 

present the main contributions of this thesis. In the first part, a review of simulation 

models used in urban water resources is conducted. This is followed by a more 

detailed description of the WATHNET5 simulation model that is used in the thesis 

case studies. In the second part, multi-objective optimization (MOO) is reviewed.  

Following a review of MOO concepts, the ε-dominance multi-objective evolutionary 

algorithm, εMOEA, is introduced and described prior to its use in the case studies 

presented in Chapters 3 and 4. In the third and final part, the software linkage 

between simulation and MOO models and the use of parallel computing is discussed 

to provide an understanding of how the case studies were implemented.  

2-2 Water Resource Simulation Models 

Simulation models are used widely to simulate the behaviour of the water 

resource systems for a given set of input conditions. These models can be generally 

categorized into two groups, namely reservoir-system-simulation models and system-
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analysis models based on a network-flow programming formulation (Wurbs, 1993; 

Labadie, 2004).  

Reservoir-system-simulation models use operating rules to assign flows. Because 

most systems are operated using operating rules, these models are widely used by 

agencies responsible for planning and operation of water resource systems. While 

these models may be custom built, it is more common for a water agency to build a 

model of its system using a generalized model in which the system is represented by a 

network of nodes and arcs (which transfer water between nodes) and all system-

specific data are stored in data files. The advantage of using a generalized model is 

that it is simpler to make changes to system configuration and operating rules.  

There is a wide range of generalized reservoir-system-simulation models. The 

HEC-5 simulation flood control and conservation system (Hydrologic Engineering 

Center, 1998) has been used widely in studies of proposed new projects and 

operational modifications of existing systems. Other models include MITSIM and 

TAMUWARP (Wurbs, 1995), IRIS (Salewicz et al., 1991) and RiverWare (Zagona et 

al., 2001). MITSIM facilitates modelling alternative river basin development plans 

involving reservoirs, hydroelectric power plants, irrigation areas, and municipal and 

industrial water supply diversions. TAMUWARP is a simulation model developed for 

studies involving a priority-based allocation of water resources among many different 

water users. In a similar way IRIS, the interactive river system simulation, was 

developed with the aim of providing a useful tool for negotiating among stakeholders 

(Salewicz et al., 1991; Wurbs, 1995). A more recent development is RiverWare 

(Zagona et al., 2001). It can be used to simulate a wide range of river and reservoir 

configurations with diverse operational objectives and for applications ranging from 

small timescale scheduling to long-term planning. 

System-analysis models are based on network-flow programming (NFP) which 

has been applied in a variety of operations research and systems engineering 

applications. System flows between nodes are not determined by operating rules but 

come from solution of the minimum cost capacitated network-flow problem (Wurbs, 

1995). The NFP approach avoids much of the complexity of specifying rules for 

water transfers, which can be particularly challenging when multiple flow paths exist. 
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Nonetheless practical implementations of the NFP approach do use rules to determine 

the costs, capacities and requirements of the network flow program.  

A range of algorithms have been developed to solve the NFP problem. They 

include the Out-of-Kilter (Fulkerson, 1961), RELAX (Bertsekas and Tseng, 1988) 

and simplex-on-a-graph NETFLO (Kennington and Helgason, 1980) algorithms. 

Kuczera (1993) compared RELAX and NETFLO and concluded that RELAX was the 

superior algorithm particularly when the NFPs were iterated many times at a given 

time step.  

A significant limitation of the NFP approach arises when non-NFP constraints 

need to be imposed – for example, when the flow in one arc is related to the flow in 

another arc. The typical approach in such circumstances is to use fixed point iteration 

in which the solution from the previous iteration is used to change the non-NFP 

constraint into a NFP constraint. However, Ilich (2009) questioned the reliability of 

fixed point iteration. He presented examples in which the use of iteration to update 

non-network constraints may lead to convergence to the wrong solution. Kuczera et 

al. (2009) also highlight problems using fixed point iteration. In practice, modellers 

need to be careful when using the NFP approach and be aware that some systems 

cannot be robustly modelled using an NFP approach. 

There exist a number of generalized models based on NFP: SIMYLD (Evenson 

and Moseley, 1970), ARSP (Sigvaldson, 1976), DWRSIM (Chung et al., 1989), 

CRAM (Brendecke et al., 1989), MODSIM (Labadie et al., 1986), KCOM (Andrews 

et al., 1992), WASP (Kuczera and Diment, 1988), REALM (Perera et al., 2005) and 

WATHNET5 (Kuczera et al., 2009). The REALM and WATHNET5 models are 

derivatives of the WASP model and are used by virtually all major urban water 

agencies in Australia. 

In this thesis, the WATHNET5 simulation model is adapted. No claim is made 

about the superiority of WATHNET5 as a simulation model. Indeed the choice of 

simulation model is not central to this thesis. WATHNET5 was selected for three 

reasons: 1) the availability of the source code meant to software could be adapted to 

new and unplanned needs; 2) its architecture facilitates the implementation of multi-

objective optimization which is the core focus of this thesis; and 3) a WATHNET5 
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model of the Sydney system, the most complex case study used in this thesis, was 

available. 

2-3 The WATHNET5 Model  

In an NFP model the water resource system is represented as a directed graph 

which is collection of nodes and a set of arcs. The nodes represent source, demand or 

transfer points on the network. The arcs represent flow paths from one node to 

another. In WATHNET5, two types of arcs are defined, namely stream arcs which 

represent rivers and conduit arcs which represent pipes. Six different nodes are 

defined in WATHNET5, namely stream, reservoir, demand, waste, harvest and 

junction nodes. Stream nodes represent a source of water to the system such as inflow 

to reservoirs or rainfall over a catchment. Reservoir nodes represent reservoirs and 

carryover storage from one time step to the next. Demand nodes represent sink points 

in the network. Junction nodes represent transfer points. Harvest nodes enable 

application of stochastic transfer functions such as in the modelling of domestic 

rainwater tank savings or run-of-river diversions at monthly time scales. Waste nodes 

act as a sink points to collect any water leaving the network.  

In a network flow model, a transfer cost is assigned to all arcs. In order to force 

flow through an arc, for instance, an environmental flow arc, a high negative cost 

needs to be assigned. In WATHNET5, the NFP is formulated as follows:  

min ( | , , )T
t tZ

c x Q D z  (2.1) 

subject to 

( | , , )t tAz b x Q D   (2.2) 

0 ( | , , )t tz u x Q D    (2.3) 

where Qt and Dt are vectors of inflow and demand for time t respectively, θ is a 

vector of parameters assigned by the user, A is a node-arc incidence matrix and z is a 

vector of arc flows, x  is a vector of decision variables (which can be optimized), 

( | , , )t tc x Q D   is a vector of costs assigned to the arcs, ( | , , )t tb x Q D   is a vector of 

nodal requirements, either restricted demand or streamflow, and ( | , , )t tu x Q D   is a 
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vector of maximum arc capacities. It is noted that ( | , , )t tc x Q D  , ( | , , )t tb x Q D   and 

( | , , )t tu x Q D   are vector functions of x, Qt, Dt and θ whose algorithms are specified 

by the user using a FORTRAN-like script. 

The formulation of the NFP in WATHNET5 is best described using an example 

based on the network shown in Figure  2-1. This network has two reservoirs and two 

demand nodes. Reservoir spill is collected by the waste node. The stream nodes 

provide stream inflow to the reservoirs. Figure  2-2 shows the full network including 

hidden arcs and the hidden balancing node. Without these hidden elements it would 

not be possible to simulate the system in Figure  2-1. The balance node ensures a mass 

balance for the network. The demand shortfall arc is assigned a very high cost and 

only conveys flow to the demand node if the demand cannot be satisfied by any other 

means. This ensures the NFP always returns a feasible solution even when demand 

cannot be satisfied by the real system. Waste nodes are connected to the balance node 

via waste arcs.  

To simulate carryover of storage, one or more carryover arcs connect each 

reservoir to the balance node. By assigning sufficiently large gains (negative costs) to 

the carryover arcs, the NFP will assign flows to the carryover arcs in preference to 

assigning flows to a waste node.  

WATHNET5 offers several options to assign carryover gains. These are 

illustrated in Figure  2-3 which shows the dialog box to assign carryover gains. All but 

one option involve some form of manual assignment of gains to individual carryover 

arcs. The remaining option, which is the one used in the thesis case studies, automates 

the assignment of gains using the following equation: 

( ) ( 1) * , 1, ,Gain i BG i IG i N      (2.4) 

where Gain(i) is the gain assigned to the ith carryover arc, BG is the base gain, IG is 

incremental gain, and N is the number of carryover arcs. The capacity of each 

carryover arcs is set as follows: 

ResCap
, 1,..., iu i N

N
 (2.5) 
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where iu  is the capacity of ith carryover arc for the reservoir and ResCap is the 

reservoir capacity.  

 

Figure  2-1 A simple network in WATHNET5 [adapted from Kuczera (1992)] 

 

Figure  2-2 Full network including hidden arcs and nodes for network shown in 

Figure  2-1[modified from (Kuczera, 1992)] 
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Figure  2-3 Carryover arcs input box 

2-4 Multi-Objective Optimization  

The main use of system operation models is to simulate system behaviour to 

answer “what-if” type of questions. However, the ultimate goal is to find the best 

solutions taking into account economic, social and environmental factors. Although it 

is theoretically possible to enumerate all possible solutions to find the optimum it is 

practically infeasible in most problems.  

The purpose of optimization models is to facilitate finding optimum solutions. 

There is a vast literature on application of optimization methods in water resources 

planning with many studies focussing on reservoir operation. Yeh (1985), Wurbs 

(1993) and Labadie (2004) provide comprehensive reviews of optimization methods 

used in water resources.  

Most of the reviewed studies have considered applications involving a single 

objective such as minimizing cost or demand shortages. However, inclusion of the 

environmental and social aspects into water planning naturally leads to multi-

objective optimization in which there exist two or more objectives that conflict or 

cannot be optimized simultaneously.  

Multi-objective optimization (MOO) has seen wide application in water 

resources management. Applications include reservoir operations (Ko et al., 1992; 

Liang et al., 1996; Kim et al., 2006; Reddy and Kumar, 2006; Chen et al., 2007; 

Reddy and Kumar, 2007a; Reddy and Kumar, 2007b; Consoli et al., 2008; Chang and 

Chang, 2009; Rani and Moreira, 2010), water distribution (Farmani et al., 2006; 

Mariano-Romero et al., 2007; Pierro et al., 2009), urban drainage (Barreto et al., 

2007) and ground water (Kollat and Reed, 2006). More specifically, Chen et al. 

(2007) used MOO for optimizing a multi-purpose reservoir rule. Similarly, Consoli et 
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al. (2008) optimized the operational rules for irrigation reservoirs employing two 

objectives. Yang et al. (2007) integrated a multi-objective genetic algorithm (MOGA) 

with constrained differential dynamic programming (CDDP); they applied CDDP to 

distribute optimal releases among reservoirs to satisfy water demand as much as 

possible and used multi-objective genetic algorithms to generate the various 

combinations of reservoir capacity. In a similar manner, Chang et al. (2009) 

hybridized the genetic algorithm (GA) and CDDP to optimize capacity expansion 

schedules for ground water supply; they used the GA to find the optimal capacity 

expansion options and the CDDP algorithm to find the optimal pumping policy 

associated with the selected expansion options. 

The problems considered in this thesis involve optimization problems with K 

objectives, which are, without loss of generality, all to be minimized and all equally 

important. A solution is represented as a decision vector x=(x1, x2, x3, . . ., xn) in the 

decision space X. The quality of a specific solution is evaluated by a vector function 

f(x) = {f1(x), …, fk(x)} which assigns to a decision vector an objective vector (f1(x), 

…, fk(x)) in the objective space F. The relation between the decision and objective 

spaces is illustrated in Figure  2-4.  

  

Figure  2-4 Illustration of decision and objective space of a multi-objective problem 

In the case of a single-objective optimization problem, two solutions (x1, x2) can 

be compared easily based on their associated objective (or criterion) values (f(x1), 

f(x2)). However, in the case of multi-objective optimization it is necessary to 

introduce the concept of dominance.  

f2 

(f1,f2,…,fk) 

f1 
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Dominance definition: A solution1 x1 is said to dominate the solution x2, if both 

of the following conditions are true (Deb 2001): 

1. 1 2( ) ( )j jf x f x  for all {1,2,..., }j K - solution x1 is no worse than x2 in all 

objectives 

2. 1 2( ) ( )j jf x f x  for at least one {1,2,..., }j K - solution x1 is strictly better 

than solution x2 in at least one objective 

The set of non-dominated solutions for the whole search space X is called the 

Pareto-optimal set. The solutions belonging to the Pareto-optimal set are said to lie on 

the Pareto frontier or Pareto front. 

The Pareto frontier is illustrated in Figure  2-5 for a two objective problem, 

minimizing cost and minimizing restriction frequency. Solution A dominates the 

solution B because it has a lower restriction frequency and a lower cost. However, A 

does not dominate C because A has a lower restriction frequency than C but a higher 

cost. For these reasons A and C are called non-dominated solutions. Indeed, it is not 

possible to find the optimum solution without any further information about criteria 

preferences.  

Usually there is some higher-level information in every real optimization 

problem that depends on subjective assessment of social, political, economic and 

environmental factors not adequately captured in the formal optimization. This kind 

of information is usually non-technical, qualitative and experience-driven (Deb, 

2001). Generally, there are two approaches to deal with this higher-level information. 

In Figures 2-6 and 2-7, schematics of these two approaches are shown. In the first 

approach called ideal multi-objective optimization, the Pareto-optimal solutions are 

found and then, using higher level information, one of the Pareto-optimal solutions is 

chosen as the preferred solution (Deb, 2001). 

 

                                                            
1 The notation for decisions is context specific. Here x1 refers to a decision vector with label “1” rather 
than the first component of the vector. 
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Figure  2-5 Concept of Pareto optimality  

In complete contrast, the second approach, called the preference-based method, 

uses higher-level information at the start of optimization. This information is used to 

assign a relative importance vector which assigns a weight to each objective. Based 

on these weights a single objective function can be formulated. Let w1, w2,....,wn be 

the weights assigned to the corresponding objectives. The single objective can thus be 

formulated as  

1

( ) ( )



K

i i
i

F x w f x  (2.6) 

It is important to note that the results obtained by using the preference-based 

method can be highly sensitive to the values assigned to the preference vector. 

Another problem with the preference-based method is that the weight vector needs to 

be supplied without any knowledge of the possible outcomes; it implicitly assumes 

that the weights are independent of outcomes. In many situations, decision makers 

would be reluctant to provide higher-level information or weights without knowledge 

of outcomes. It is thus concluded that the ideal method is the preferred approach. 

Therefore, methods for finding Pareto-optimal trade-off solutions will be the focus of 

the next section.  
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Figure  2-6 Schematic of ideal multi-objective optimization method (Deb, 2001) 

 

Figure  2-7 Schematic of preference-based multi-objective optimization method  

(Deb, 2001) 



Chapter 2  21 

    

2-5 Methods for Identifying Pareto-Optimal Solutions 

A good multi-objective optimization method should be able to converge to the 

Pareto-optimal front quickly as well as providing a good distribution of solutions 

along the front (Huang et al., 2006). There are several approaches described in the 

literature that seek the Pareto-optimal front. In the following sections, two broad 

classes are discussed, namely the classical and evolutionary methods. 

2-5-1 Classical Optimization Methods 

Classical optimization methods, which have been applied in the last four 

decades, are typically based on mathematical programming approaches that under 

certain conditions ensure convergence to a Pareto-optimal solution (Deb, 2001). 

Weighted sum, ε-constraint, weighted metric and goal programming approaches are 

some examples of classical methods. These methods convert the multi-objective 

optimization to a single-objective optimization problem to obtain one Pareto-optimal 

solution at a time. Therefore, they have to be applied many times, with the aim of 

finding a different Pareto solution at each iteration (Deb et al., 2002a). This can be 

grossly inefficient compared with heuristic methods that search for the Pareto-optimal 

set of solutions (Deb, 2001).  

The classical methods have a number of drawbacks. First, classical methods 

suggest a way to convert a multi-objective problem to a single objective problem. In 

most cases the optimal solution to the single objective problem is expected to be a 

solution on the Pareto frontier. However, such a solution is subject to parameters used 

in the conversion approach. Thus to find N points on a Pareto front, at least N 

different sets of parameters should be used to form N single objective problems. 

Second, some of these methods will not be able to generate concave portions of the 

Pareto front. Finally, all methods require some problem knowledge to assign suitable 

weights or ε values (Deb, 2001). Martínez et al. (2007) note that the performance of 

these methods is sensitive to the choice of weights. 

To avoid the above-mentioned significant shortcomings, many researchers have 

turned to heuristic methods such as evolutionary algorithms to solve multi-objective 

optimization problems. 
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2-5-2 Multi-Objective Optimization Evolutionary Algorithms 

The term “evolutionary algorithm” (EA) represents a class of stochastic 

optimization methods that are based on the process of natural evolution. The origins 

of EAs were proposed in the late 1950s, and since the 1970s several classes of 

evolutionary methods such as genetic algorithms, evolutionary programming, and 

evolution strategies have been proposed. EAs have been employed in a variety of 

engineering applications and these algorithms have proven themselves as general, 

robust and powerful methods (Deb, 2001; Coello Coello et al., 2007). They have 

several characteristics that make them desirable for problems that have multiple 

objectives and large and highly complex search spaces.  

Over the past decade, a number of multi-objective evolutionary algorithms 

(MOEAs) have been suggested (Fonseca and Fleming, 1993; Horn et al., 1994; 

Zitzler and Thiele, 1998; Deb, 2001; Coello Coello et al., 2007). Of these algorithms, 

NSGA-II and εMOEA were selected for use in this thesis. In Chapter 5, both of these 

algorithms are evaluated in a comparative assessment of performance involving a 

selection of different types of MOO algorithm.  

For the case studies reported in Chapters 3 and 4, εMOEA was selected to 

perform the MOO search. Given that the focus of these chapters is on improved MOO 

problem formulation, the choice of MOO algorithm is not critical. It suffices to use a 

MOO algorithm with a good track record of providing a diverse set of approximately 

Pareto-optimal solutions. Although NSGA-II has been widely reported in the 

literature and used as a benchmark method in many studies, εMOEA was selected 

over NSGA-II for two reasons: 

1) There was concern about NSGA-II’s ability to provide a diverse set of Pareto-

optimal solutions. This arises because NSGA-II limits the number of archived 

non-dominated solutions to the population size (Laumanns et al., 2002). εMOEA 

uses a different archiving strategy proposed by Laumanns et al. (2002) to 

overcome this limitation. Deb et al. (2003a) compared εMOEA against several 

evolutionary algorithms including NSGA-II and found εMOEA performed overall 

better in terms of convergence, diversity and computation time.  
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2) The comparative experiments reported in Chapter 5 confirmed this concern with 

εMOEA shown to be demonstrably superior to NSGA-II. 

2-5-3 An Overview of εMOEA 

The purpose of this section is to provide an overview of the ε-multi-objective 

optimization evolutionary algorithm (εMOEA). The distinguishing feature of εMOEA 

is the use of the ε-dominance concept which divides the objective space into 

hyperboxes of size ε and allows only one non-dominated solution to reside in each 

box (Laumanns et al., 2002). Inclusion of this concept in a genetic algorithm (GA) 

framework produces a method capable of maintaining a diverse and well-distributed 

set of solutions with a small algorithmic computational cost (Deb et al., 2003a).  

As before, without loss of generality, it is assumed there are K objectives, all of 

which are to be minimized. 

Definition of ε-Dominance: A solution x1 is said to ε-dominate the solution x2 

for some εj>0 if both of the following conditions are true (Coello Coello et al., 2007):  

1. 1 2( ) ( )j j jf x f x    for all 

2. 1 2( ) ( )j j jf x f x    for at least one {1,2,..., }j K  

Figure 2–8 illustrates the ε-dominance concept geometrically. It shows two non-

dominated solutions, P1 and P2. To check if P1 ε-dominates P2, P*2 is formed by 

adding ε1 and ε2 to the objective values of P2. Since P*2 is dominated by P1 it follows 

that P1 ε-dominates P2. The box formed in Figure  2-8 leads to the idea of dividing the 

objective space into hyperboxes to facilitate checking whether solutions are ε-

dominated. Figure  2-9 illustrates hyperboxes for a two-objective space. It shows that 

the solution P ε-dominates the entire region ABCDA while P only dominates the 

region PECFP. Indeed, any solution in the ABCDA region (except for the box in 

which P is located) would be ε-dominated by P because if ε1 and ε2 were added to 

objectives of such a solution it would lay in hatched area. However, all the solutions 

which share the same box with solution P ε-dominate each other. In this case the 

solution which has the shortest Euclidean distance to the bottom left corner of the box 

is deemed to dominate the other solutions. This situation is illustrated in Figure  2-9 
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for solutions 1 and 2. Since solution 1 is closer to the bottom left corner of the box, it 

is retained and solution 2 is eliminated.  

 

Figure  2-8 Schematic of ε-dominance concept 

Figure  2-10 illustrates the application of ε-dominance in three steps. In the first 

step, for hyperboxes containing more than one solution, the solution which is closest 

to the bottom left corner of the hyperbox is retained (assuming minimization). For 

instance, in Figure  2-10, in two of the hyperboxes there are two solutions occupying 

the hyperbox; those marked by a red cross are eliminated. The next step applies the ε-

dominance criterion to the remaining solutions. For example, the lower solution in the 

first column ε-dominates the higher solution in the first column. Eliminating the ε-

dominated solutions produces the ε-dominance Pareto front in step 3. 

 

Figure  2-9 Illustration of ε-dominance concept for minimizing f1 and f2  

(Deb et al., 2003a) 
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Figure  2-10 Illustration of Pareto frontier in conjunction with the ε-dominance 

concept (Kollat and Reed, 2006) 

εMOEA uses two co-evolving populations: a current population archive P(t) and 

an archive of ε non-dominated solutions E(t), where t is the iteration counter. The 

initial population P(0) is selected randomly and the initial archive population is 

assigned the ε-non-dominated solutions of P(0). Thereafter, two solutions, referred as 

parents, one each from the current and the archive population are selected for mating. 

To select a parent from P(t), two solutions are chosen randomly. Then, if one of the 

solutions dominates the other one, that solution is chosen. Otherwise, the two 

solutions are non-dominated and one of the solutions is selected randomly. The parent 

from E(t) is simply chosen at random among the archive members. Applying 

crossover and mutation operations on the two parents produces two offspring 

solutions. This procedure is illustrated in Figure  2-11.  
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Figure  2-11 Schematic of εMOEA (Adapted from Deb et al., 2003a) 

Each of the offspring solutions is evaluated and then compared with the current 

and archive populations for possible inclusion. First, tests are conducted to determine 

if an offspring should be accepted into the E(t) archive: 

1. If the offspring solution is ε-dominated by any solution in E(t), it is rejected.  

2. If the offspring ε-dominates any solution in E(t), that solution is deleted and 

the offspring added to E(t).  

3. If both of the above cases fail, it indicates that the offspring solution is ε-non-

dominated. In that case, the following tests apply: 

a. If the offspring solution does not share the same hyperbox with any 

solution in E(t), the offspring is added to E(t).  

b. If the offspring shares the same hyperbox with a solution, strict non-

domination is applied. If the offspring solution strictly dominates the 

archive solution or it does not strictly dominate the archive solution 

but is closer to bottom left corner of the hyperbox (for minimization 

problems), then it is accepted into E(t) and the archived solution is 

rejected.  

Offspring 

Crossover 

Population Archive
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If an offspring is not accepted into E(t), then tests are conducted to determine if 

the offspring is to be accepted into P(t). To include the new offspring in P(t), three 

tests are conducted: 

1. If the offspring solution is dominated by any existing member of the 

population, it is rejected.  

2. If the offspring solution dominates one or more solutions in the current 

population, it replaces one at random. 

3. If both of the above cases fail, it indicates the offspring solution is a non-

dominated solution with respect to the current population. As a result, it 

replaces a random member of the population. 

 εMOEA and other heuristic search methods cannot guarantee finding Pareto-

optimal solutions. For that reason it is a common practice to run these algorithms 

multiple times with different random seed numbers.  

The search is terminated when certain conditions are satisfied. These may 

include the following: 

1. No improvement in the non-dominated solution set for a prescribed number 
of iterations. 

2. The number of iterations reaches a maximum value. 

3. A prescribed value of convergence/diversity metric has been attained.   

In the next two chapters, εMOEA is used in the case studies to conduct the 

search for Pareto-optimal solutions. However, Chapter 5 revisits the choice of MOO 

algorithm with the goal of identifying the algorithm best suited to urban water 

resources problems.  

2-6 Optimization and Simulation Framework 

A number of researchers have linked simulation and optimization methods. For 

instance, Cai et al. (2001) embedded a GA into a linear programming simulation 

model. Cui and Kuczera (2005) used a GA coupled to an earlier version of 

WATHNET5 to study single objective urban water resources problems. Shourian et 

al. (2008) coupled a single-objective particle swarm optimization method with the 
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MODSIM simulation model to allocate water optimally over time and space. They 

treated the capacities of reservoirs, transfer and pumping systems along with 

operational rules as decision variables.  

The linking of the WATHNET5 simulation model with a MOO algorithm can be 

formulated mathematically using the notation of Eqs. (2.1) to (2.3) as follows:  

1 2    [ ( )], [ ( )],..., [ ( )]K
x

min f z x f z x f z x  (2.7) 

subject to z(x) being the solution of the following minimization problem:  

min ( | , , )

subject to ( | , , ),0 ( | , , )

T
t tZ

t t t t

c x Q D z

Az b x Q D z u x Q D



   
  

and  

( , ) 0 g x z  

where ( , )g x z  is a vector of constraints.  

The implementation of the minimization problem given by (2.7) is schematized 

in Figure  2-12. The first step is to develop the simulation model and its input data Qt, 

the decision space X and the objective functions f1, f2,…,fK. Then the optimization 

algorithm supervises the search for the Pareto-optimal solutions. At each iteration of 

the search, a set of decisions x is selected by the optimization method and passed to 

the simulation model. The simulation model simulates the system response to the 

inputs Qt and parameters  to produce outputs z(x) which are used evaluate the 

objective function values fi[z(x)],i=1,..,K which, in turn, are passed to the 

optimization model. The optimization model then assigns a new set of decisions and 

passes them to the simulation model. This process continues until a termination 

condition is satisfied.  
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Figure  2-12 Schematic of communication between simulation and optimization 

models  

2-7 Parallel Computing  

In many real-world optimization problems, and particularly in water resource 

problems, the computation of the objective function is expensive. In addition, in some 

of these problems, it is necessary to evaluate a huge number of objective functions in 

order to find solutions close to the Pareto optimum (Jaimes and Coello, 2007). This 

means computation times may be days, weeks or even months. 

Three strategies have been proposed in past studies to reduce computational 

time. Some researchers have developed optimization methods which converge to the 

optimal solution more efficiently (i.e. with fewer of evaluations) (Knowles, 2006; 

Pierro et al., 2009). Another strategy involves meta-modelling (Broad et al., 2010; 

Razavi et al., 2012). A meta-model is used to approximate the mapping between 

decisions and objective functions. If the mapping is sufficiently accurate, the meta-

model can replace the computationally expensive simulation model. Finally, parallel 

computing has gained considerable attention since it can reduce the computation time 

very substantially. Civil engineering applications using parallel computing include 
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applications in structural engineering (Kandil and El-Rayes, 2005), computational 

fluid mechanics and water engineering (Alonso et al., 2000; Cui, 2003; Cui and 

Kuczera, 2005).  

One of the attractive features of evolutionary algorithms and other heuristic 

methods is their ability to support parallel computing. For instance, in EAs, the 

objective functions can be evaluated at each generation independently using the 

master-slave. Alternatively, Deb et al. (2003b) suggested a parallel MOEA approach 

based on NSGA-II which distributes the task of finding the whole Pareto-optimal 

front among participating processors with each processor dedicated to finding a 

particular part of the Pareto-optimal front.  

There are several software protocols for implementing parallel computing, 

including Message Passing Interface (MPI) (Pacheco, 1997) and Parallel Virtual 

Machine (PVM) (Geist, 1994). Both MPI and PVM have been used widely. With 

respect to implementing the master-worker protocol, there is little difference between 

PVM and MPI. Accordingly, in this study PVM was adopted because of existing 

experience and support.  

PVM (Geist, 1994) is a message-passing system which allows a user to create 

and access a parallel computing system consisting of multiple processors running on 

multiple hosts with possibly different operating systems. The PVM model 

accommodates a wide range of parallel computing models including the master-

worker, node-only, tree computation, and hybrid computation models (Geist, 1994). 

The master-worker protocol is the most natural model for parallelizing 

evolutionary algorithms (Cui, 2003). Following Cui and Kuczera (2005) the master-

worker protocol is described by the pseudo-code presented in Figure  2-13. The master 

program hosts the MOEA. First, it spawns the PVM and determines the number of 

worker processes. The initial population is then generated and the corresponding 

decisions are sent to the workers for evaluation. When the initial population has been 

evaluated, the master enters the main iteration loop. The MOEA produces the next 

generation of decisions applying crossover and mutation operations on selected 

parents. These decisions are sent to the first available worker for evaluation. The 

master then waits until it receives a vector of objective function values from a worker. 
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That solution is then processed. It may be added to either the Pareto or population 

archive or discarded. The iterations continue until a termination criterion is met.   

Master program 

Spawn the PVM 

Generate initial population 

Send initial decision vectors to the workers for evaluation 

Evaluate the initial objective functions 

Do  

Produce a new decision vector using operations such as crossover and   mutation 

Send decision vectors to an idle worker  

Wait and receive objective function values from any worker 

Process the new solution 
Stop if a termination criterion is met 

End do 

Display results 

Terminate worker processes 

End PVM program 

Worker program 

Do 

Wait for a message of decision vectors sent by the master 

Run simulation model and evaluate objective functions 

Send objective function values to master 

End do 

Figure  2-13 Pseudo code for master-worker protocol in PVM  

(Adapted from (Cui, 2003)) 

In worker program, the worker waits until it receives a decision vector from the 

master. It then runs the simulation model, computes the objective functions values 

and send them to the master. It then waits for a new decision vector.  

Because the message passing between the master and worker processors involves 

small data strings and because the time taken by a worker processor to conduct a 

simulation is, at least, several orders of magnitude longer than the time to pass a 
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message, the speed-up is almost exactly proportional to the number of worker 

processors. 

2-8 Summary 

In this chapter a brief review of current simulation and optimization methods 

was presented with the objective of selecting a simulation model and an optimization 

method for use in subsequent chapters which constitute the main contribution of this 

thesis. Each selected model was then described in more detail to provide sufficient 

background for the case studies that appear in the subsequent chapters. The 

WATHNET5 model was selected for reasons of convenience – its source code was 

available, its software design facilitated linkage with MOO methods and a complex 

urban system had already been set up in WATHNET5. The εMOEA algorithm, an 

established method with good reported performance, was selected to conduct the 

multi-objective optimization case studies reported in the next two chapters. An 

overview of the communication protocols between the simulation and optimization 

models in a parallel computing environment concludes this chapter.  
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3-1 Introduction 

Recent Australian experience with arguably the severest drought on record and a 

potentially shifting climate has highlighted the vulnerability of urban water supplies 

to “running out of water”. As storages dwindled in the major urban centres of Sydney, 

south-east Queensland, Perth, Melbourne and Adelaide, agencies responsible for 

urban water supply triggered drought contingency plans which started with the 

imposition of restrictions and, in most cases, led to the development of climate-

independent sources of water such as desalination and wastewater reclamation. To 

secure Australian cities against drought, investments totalling tens of billions of 

dollars have been committed. 

In an Australian industry position paper describing a framework for urban water 

resource planning, Erlanger and Neal (2005) state in their opening: “A safe and 

reliable water supply system is of utmost importance to the community. It is expected 

and understood that water utilities manage their water resources so that communities 

never run out of water.” Erlanger and Neal recognize that failure to supply minimum 

water needs for an extended period would most likely result in disastrous social and 

economic losses that could conceivably threaten the very existence of the urban 

community.  

Managing drought security in urban water supply is a complex and costly task, 

typically tackled using a two-pronged risk management approach, implementing 

short- and long-term options. The risk of exposure to severe drought is managed by 

application of long-term options such as policies that affect water use efficiency and 

provision of long lead-time infrastructure. Specifically, these long-term options 

control the probability of triggering short-term options or drought contingency plans, 

which may involve restrictions/rationing and short-lead time (and usually very 

expensive) source augmentation or substitution.  

In view of the massive investments to secure Australian cities against drought, 

this chapter considers the question, what is the best mix of long- and short-term 

options in an urban headworks system? Here “headworks” refers to that part of the 

urban water supply infrastructure that harvests, stores and distributes water to major 
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consumption zones. In seeking an answer to this question, several practical 

considerations deserve particular attention: 

1. The maximization of drought security conflicts with the objectives of 

minimizing cost and environmental impacts. Recognizing the difficulty 

of quantifying environmental and social impacts solely in economic 

terms, multi-objective optimization (Deb, 2001) is needed to identify the 

trade-offs between conflicting objectives. 

2. The consequences of an urban area “running out of water” are so severe 

that most systems are designed to have very high levels of security. This 

means that the probabilities of triggering drought contingency plans, 

particularly during extreme drought, are likely to be very small, while the 

probability of “running out of water” should be even lower. Because 

drought security criteria are often expressed in terms of probabilities of 

trigger events (Erlanger and Neal, 2005), it is vital that such probabilities 

be accurately estimated. 

3. The performance of an urban headworks system is jointly dependent on 

the mix of short- and long-term options. Therefore, in a search for the 

best solution, it is essential that both short- and long-term options be 

evaluated jointly. 

It is shown in the review of the water resource optimization literature in 

Section  3-2 that no previous work has adequately addressed all these practical 

considerations. The principal contribution of this chapter is twofold. First, the 

problem of optimizing the planning and management of urban water resources is 

formulated in a manner that addresses all these considerations. Specifically, the 

formulation addresses the practical challenges of identifying approximate Pareto-

optimal solutions involving the full mix of short- and long-term options, while 

realistically accounting for drought risk and the trade-offs between economic, 

security and environmental factors. Second, a case study demonstrates the practical 

importance of addressing these challenges. It shows that failure to address these 

challenges can result in solutions that are significantly inferior and of limited practical 

value to headworks managers. 
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This chapter is organized as follows: Following a review of the literature, the 

shortcomings of existing methods are identified and motivate a new approach that 

more fully deals with the requirements of practical multi-objective urban water 

resource planning. An extensive hypothetical case study based on the headworks 

system for Sydney (Australia) demonstrates the practical importance of adopting this 

new approach and illustrates the challenges and insights identifying the approximate 

Pareto-optimal solutions that trade-off economic costs, environmental and drought-

related social impacts. 

3-2 Review of Urban Water Resources Optimization Literature 

In the quest for securing urban water supplies against drought, water utilities use 

a mix of short- and long-term options to manage supply and demand. The short-term 

response to drought is embodied in a drought contingency plan (DCP). It is common 

practice to develop a staged DCP that progressively imposes severer restrictions on 

consumption while accessing emergency sources of water. The fundamental 

proposition is that the DCP reduces (and nowadays with the availability of climate–

independent sources of water such as desalination, potentially eliminates) the risk of 

the system running out of water. A number of optimization studies have explored the 

benefit of imposing restrictions on demand to mitigate drought. For instance, Shih 

and ReVelle (1994, 1995) developed hedging rules for a single reservoir to reduce 

demand during drought. Tu et al. (2003, 2008) developed a mixed integer linear 

programming model that jointly considers reservoir release and hedging rules to 

minimize the shortages in current and future water supply. A limitation of these 

studies is that the social and economic cost of imposing restrictions was not 

addressed. Although imposing restrictions on demand reduces the risk of running out 

of water, frequent restrictions are not socially acceptable in major Australian cities 

(Erlanger and Neal, 2005).  

In response to reducing the frequency of restrictions yet maintaining security, 

water utilities consider a range of long-term options to reduce demand and increase 

supply. However, each option imposes a cost on the community and environment. A 

number of studies have developed models to find the least-cost combination of short 

and long-term options. Lund (1987) evaluated the integration of water conservation 

measures with capacity expansion options showing that costs could be minimized by 
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applying conservation measures to delay water treatment plant expansion. Rubinstein 

and Ortolano (1984) demonstrated the application of demand management in long-

term water supply planning. In a similar vein, Dziegielewski et al. (1992) developed a 

framework to balance long-term water supply alternatives with short-term drought 

responses in order to identify the most cost-effective investments offering long-term 

drought protection. Subsequently, Wilchfort and Lund (1997) minimized the expected 

cost of a combination of long-term and short-term options. Jenkins and Lund (2000) 

integrated shortage management and yield models to identify operating rules that 

minimize operating and shortage costs. However, as Dziegielewski et al. (1992) 

emphasize, the usefulness of these approaches depends on the accuracy and validity 

of costs associated with short-term demand-reduction measures.  

Due to difficulties in estimating costs associated with restrictions or shortages, a 

number of studies (Randall et al., 1990; Ko et al., 1992; Liang et al., 1996; Kim et al., 

2006; Reddy and Kumar, 2006; Chen et al., 2007; Yang et al., 2007; Kim et al., 2008; 

Chang and Chang, 2009; Kasprzyk et al., 2009) have adopted a multi-objective 

optimization approach. All of these studies except Yang et al. (2007) and Kasprzyk et 

al. (2009) have focused on short-term decisions associated with reservoir releases and 

restriction rules. However, there is an interaction between short- and long-term 

options as demonstrated by Lund (1987). Yang et al. (2007) investigated the 

interaction between reservoir operating rules and reservoir capacity but did not 

incorporate any DCPs. Kasprzyk et al. (2009) focused on water marketing and 

portfolio-based management strategies in the context of a single reservoir system; 

they did not optimize infrastructure options nor DCPs.  

The rationale for multi-objective optimization is strengthened when 

environmental impacts are considered. Rivers downstream of dams typically 

experience a hydrologic regime change which can adversely impact on the health of 

riverine ecosystems (Shiau and Wu, 2007). In recent years, in an effort to support 

sustainable ecosystems, releasing sufficient water to meet instream flow requirements 

– environmental flows – has received considerable attention from the water resources 

management community (Richter et al., 2006).  

In many past studies, environmental flows have been considered as a constraint 

(Tu et al., 2003; Tu et al., 2008). However, this hides the trade-offs between cost, 
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supply security and environmental impact. Suen and Eheart (2006) circumvented this 

shortcoming using multi-objective optimization to demonstrate the trade-off between 

human and ecosystem needs in which the ecosystem objective was to maximize the 

similarity between natural and flow released from the reservoir. Likewise Shiau and 

Wu (2007) applied multi-objective optimization to optimize weir operation to balance 

ecosystem and human needs. However, these studies ignored the cost dimension and 

only focused on operational rules. By explicitly presenting the trade-offs between 

cost, drought security and environmental impact, Erlanger and Neal (2005) suggest 

communities may be prepared to pay more in return for less environmental damage. 

To evaluate the performance of an urban headworks system, a simulation model 

is typically constructed to model the behaviour of the system in response to a time 

series of hydro-climatic and demand inputs – see Labadie (2004) for a review. The 

length of the time series used as input is critical. Given that urban systems typically 

operate with high levels of reliability, the time series must be long enough to enable a 

meaningful assessment of drought risks. The significance of this issue is best 

illustrated by an example. The annual probability of triggering a DCP, DCPp , can be 

estimated by counting the number of years the DCP is triggered in a simulation and 

dividing by the number of simulation years N. Assuming annual independence, the 

standard error of the estimate based on binomial probability model considerations is  

1
ˆ ˆ ˆ( ) (1 )DCP DCP DCPstderr p p p

N
 

  (3.1) 

Suppose in a 100-year simulation, the DCP was triggered once. Then 

ˆ 0.01DCPp  and the standard error is 0.010. This large uncertainty can be presented 

more intuitively using return periods; it can be shown that the 95% confidence limits 

on the return period for the DCP trigger are 23 and 1580 years. This uncertainty arises 

solely because of the insufficient length of the simulation.  

This example suggests that evaluating drought risks and associated drought 

security criteria using simulation models with insufficiently long input time series 

borders on being meaningless with the results being sensitive to the choice of the 

input time series. Indeed Ajami et al. (2008) suggest that use of historical data can 

lead to development of inefficient water management rules.  
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One way to reduce this sampling uncertainty is to increase the length of the input 

time series. This can be done by generating long stochastic input time series by 

sampling from probability models fitted to historical data (Salas et al., 2005). All but 

three of the reviewed multi-objective optimization applications to urban water 

resource systems used historical data. Though Kim et al. (2008) and Shiau (2009) 

used 100 and 40 years of synthetic data respectively, such record lengths are 

considered completely inadequate for use with high security urban systems. In their 

study of many-objective portfolio planning Kasprzyk et al. (2009) evaluated the 

performance of each proposed portfolio with 5,000 10-year Monte Carlo samples. 

However, their Monte Carlo strategy involved resampling 10-year samples from a 33-

year historical record, which is statistically unlikely to include severe drought. That 

said, Kasprzyk et al. did consider solution robustness by investigating sensitivity to 

initial conditions and extreme drought/demand scenarios. As a result, all of the 

reviewed studies suffer from the potentially serious limitation that the Pareto 

solutions are not robust in the sense of the solutions being sensitive to the choice of 

input data used in the simulation. 

3-3 A More Practical Multi-objective Optimization 

Methodology for Urban Water Supply  

This section formulates a multi-objective optimization methodology for an urban 

headworks system which addresses all the shortcomings identified in previous work 

on this subject. In the following section a case study is used demonstrate the practical 

significance of addressing these shortcomings. 

Generally, the urban headworks multi-objective optimization problem can be 

formulated as follows: 

1 2min [ ( )], [ ( )],..., [ ( )]k
x

f z x f z x f z x  (3.2) 

,subject to ( ) [ , ]

( , ( )) 0

0

N N

N

z x M x Q D

g x z x

Sf






 

where x  is a vector of decision variables that are to be optimized.  
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The function [ , , ]N NM x Q D  represents the headworks simulation model which 

takes as input NQ , a matrix of streamflow and climate values at multiple sites for an 

N-year period,
 
and ND , a matrix of unrestricted demand at multiple sites for the same 

N-year period, to produce simulation outputs ( )z x . There are many simulation 

models in the literature (Labadie, 2004) capable of simulating urban headworks 

systems. All that matters is that the model satisfactorily simulates the actual operation 

of the headworks system using information that would be available to the operators. 

The simulation outputs are used to evaluate ( )Nf Z , the vector of criterion (or 

objective function) values. The function ( , )Ng x Z  is a vector of constraints.  

The constraint 0NSf   is essential to the urban headworks optimization 

problem. It requires that no unplanned demand shortfalls, denoted by NSf , occur 

during the simulation. Unplanned shortfalls occur when the demand, permitted by the 

DCP, cannot be supplied – such shortfalls typically would occur when reservoirs run 

dry or when limitations in transfer capacity result in demand zones being supplied 

less than the minimum permitted by the DCP.  

The optimization problem (3.2) is largely intractable using classical optimization 

approaches which typically impose severe constraints on the form of the simulation 

model [ , , ]N NM x Q D  and constraints ( , )Ng x Z  and therefore restrict the inclusion of 

variables in the decision space. However, the advent of evolutionary optimization 

algorithms – see (Deb, 2001) – has made the solution of (3.2) significantly more 

tractable. In the water resources field, many researchers have recognized and 

exploited this opportunity – see the recent review by Labadie (2004) and Nicklow et 

al. (2010). Of particular importance to this study is the greater freedom in specifying 

the decision vector. This enables optimization of the full mix of decision variables 

associated with short- and long-term options.  

The formulation (3.2) differs from previous formulations in the way it deals with 

drought security. The specification of drought security in the sense of Erlanger and 

Neal (2005), namely urban “communities never run out of water” is problematic. 

Unless climate-independent sources of water (such as desalination) can guarantee a 

minimum supply, there will always be a finite probability that the system will run out 
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of water. This is unavoidable. The best that one can do is manage the risk of running 

out of water. 

The optimal solutions in (3.2) are conditioned on the input QN. A more useful 

interpretation is that the Pareto-optimal solutions (3.2) secure the system against 

droughts with return periods up to an expected value of N years. Seen this way, the 

expected return period N defines the drought security risk level for the system. As 

will be demonstrated, the explicit recognition of this risk level is vital to practical 

optimization outcomes. 

3-4 Case Study 

This section presents a case study to illustrate the application of the multi-

objective optimization formulation (3.2) and to identify important insights arising 

from its application. It is motivated by the headworks system that supplies Sydney, 

Australia’s largest city serving a current population of 4.5 million.  

3-4-1 Optimization Implementation Issues 

Chapter 2 provided an overview of the simulation and optimization models used 

to implement Eq. (3.2) in this study. This will be briefly reviewed here. 

Similar to Cai et al. (2001), Cui and Kuczera (2005) and Yang et al. (2007), a 

two-level optimization approach is adopted. For the simulation model [ , , ]N NM x Q D , 

the WATHNET5 model (Kuczera, 1992; Kuczera et al., 2009) is adopted. The 

scripting language within WATHNET5 enables the user to specify quite complex 

run-time functions to assign arc capacities and costs and side constraints to the 

network linear program. The decision vector x  is accessible to all scripts and, 

therefore, can fully control the specification of the network linear program. 

A major implementation issue in this case study was the computational time to 

solve the optimization problem (3.2). The total computational time is proportional to 

N, the number of years of simulation. In this case study, a 10,000-year simulation 

using monthly time steps takes approximately 60 seconds on an Intel T7700 CPU 

running at 2.40 GHz. If the multi-objective optimization algorithm evaluates 20,000 

different decision vectors, the total run time will be about 14 days. Extensive use was 
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made of parallel computing in conjunction with εMOEA to make the multi-objective 

optimization tractable. 

3-4-2 Description of Sydney Headworks System 

The case study considers a simplified representation of the Sydney headworks 

system which, nonetheless, accounts for many of the interesting dynamics of the 

Sydney system. It considers several scenarios involving a hypothetical mix of short- 

and long-term options that cater for a future population of 7 million corresponding to 

a highly stressed system. 

Figure 1-1 presented a graphical depiction of the Sydney headworks system. The 

representation of this system in WATHNET5 is presented in Figure  3-1 in which the 

nodes labelled “R” represent reservoirs, “S” stream nodes, “D” demand zones, and 

“W” waste/sink nodes. The network of reservoirs, pumping stations and water 

treatment plants supplies water to two demand zones labelled “Sydney” and “South” 

in Figure  3-1. The existing system has a total storage capacity of 3,343,487 ML 

(mega litres). Warragamba Reservoir is the largest reservoir in the system with a 

capacity of 2,031,000 ML. The Sydney demand zone, which serves approximately 

90% of the population, is supplied by Warragamba Reservoir together with a number 

of smaller reservoirs, Avon, Woronora, Cataract, Nepean and Cordeaux. In contrast, 

the South demand zone, which serves the remaining 10% of the population, is only 

supplied by Nepean and Avon Reservoirs. An inter-basin transfer scheme augments 

the natural inflows into Warragamba and Nepean-Avon Reservoirs. The transfer 

scheme is located on the Shoalhaven River and involves a small pondage at Lake 

Yarrunga from which water is lifted over 500 m using two pumping stations to 

transfer water to Wingecarribee Reservoir from where it can be transferred to 

Warragamba or Nepean Reservoirs. The pump stations have a monthly transfer 

capacity of 46,600 ML.  
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Figure  3-1 WATHNET5 schematic of Sydney water supply headworks system - the 

nodes labeled “R” represent reservoirs, “S” stream nodes, “D” demand zones, and 

“W” waste/sink nodes 

For the purposes of this case study, environmental flow considerations are 

restricted to the Wollondilly River between Wingecarribee and Warragamba 

Reservoirs. The primary environmental issue is to limit high flows when pump 

transfers from the Shoalhaven are in progress, to avoid adverse impacts on riverine 

ecosystem function. Scott and Grant (1997) investigated the impacts of high flows on 

the riverine ecosystem and recommended maximum monthly regulated flows to avoid 

ecological impacts.  

In this case study, two options for augmenting the supply are available. The first 

is a new dam at Welcome Reef on the Shoalhaven River, upstream of Lake Yarrunga. 

The second is a desalination plant serving the Sydney demand zone. This latter option 

is strategically different from Welcome Reef in that it provides a climate-independent 

supply of water.  

The supply zones, Sydney and South, are each disaggregated into three demand 

nodes representing domestic indoor, outdoor watering and commercial/industrial 

consumption. In this case study, the DCP only restricts the outdoor watering usage. It 

is recognized that rationing during severe drought would be extended to the other 

usage categories. 
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3-4-3 Streamflow and Demand Data 

The Sydney system experiences high natural climate variability. For instance, the 

annual coefficient of variation for inflows to Warragamba Reservoir is about 1.1. In 

view of this variability and the multi-year persistence of droughts, the reservoirs in 

the Sydney system have significant over-year carryover capacity. Therefore, when 

generating stochastic hydro-climate data for this system, it is important that the 

stochastic model produces sequences that are consistent with the multi-year observed 

statistics such as cumulative overlapping n-year sums (with n ranging from 1 to 5 

years). The following two-step algorithm was used to generate stochastic streamflow 

and climate data: 1) annual values were generated using the Matalas (1967) lag-one 

multi-site model calibrated to non-contiguous historical streamflow and climate 

records up to 84 years long using the missing-data EM algorithm (Kuczera, 1987); 

and 2) monthly values were obtained by disaggregating the annual flows using the 

method of fragments. Extensive testing has revealed this model produces multi-year 

statistics consistent with the observed data. Indeed, Thyer et al. (2006) argue that 

more complex stochastic models describing decadal to multidecadal-scale variability 

are not identifiable using historical records of the length available in the case study. 

To explore the sensitivity of the approximate optimal solutions to the choice of 

drought security return period, two sets of stochastic data were used: one 500 years 

long and the other 10,000 years long. It is noted that the 500-year series corresponds 

to the first 500 years of the 10,000-year series. 

Demand for the 7-million population scenario was disaggregated into indoor 

domestic, outdoor domestic and commercial/industrial categories. Because outdoor 

domestic demand is correlated with rainfall, it was stochastically generated using the 

stochastically generated rainfall as input. This ensures that the higher outdoor water 

usage during droughts is preserved in the stochastic data Cui (2003).  

The following steps were applied to determine water demand at each demand 

node: 

1. Generate the monthly average indoor per capita water consumption 

(InWater(k), k=1,…,12) using the data in Table  3-1. 
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2. Generate concurrently with streamflow the number of rain days at 

Prospect reservoir denoted as Rain k , k 1, … ,12	 which presents rain 

days for replicate i in year t.  

3. Compute the total monthly demand for the following categories: 

a. Indoor residential demand 

InHouse k InWater k population t, k   (3.3) 

   where population(t,k) is the population for month t and year k 

b. Outdoor residential demand 

ExHouse k A k B k Rain k population t, k  (3.4) 

where A(k) and B(k) are parameters obtained from a monthly 

regression analysis between per capita outdoor water consumption 

and number of rain days (Cui, 2003). 

c. Commercial demand 

Commercial k InHouse k ExHouse k .

.
  (3.5) 

Table  3-1 Average monthly per capita indoor water consumption 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Indoor 3

.98 
3

.89 
4

.15 
4

.10 
4

.31 
4

.05 
4

.22 
4

.20 
4

.01 
4

.23 
4

.17 
4

.29 
 

3-4-4 Decision Variables 

A large number of options is available to ensure a secure water supply for 

Sydney’s 7-million population scenario. In this case study, eleven decision variables, 

listed in Table  3-2, were identified as being potentially important. They are classified 

as either infrastructure (which corresponds to a physical asset) or operational (which 

affects the way the system is operated).  

Decisions x1 and x2 control the pump transfer of water from the Shoalhaven 

basin. x1 is a pump mark that defines the Warragamba storage fraction which triggers 
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transfer of water from Shoalhaven to Warragamba; if the storage fraction in 

Warragamba is below the pump mark x1 at the start of a month, the maximum pump 

transfer capacity is activated. A separate pump mark x2 is applied to Avon on account 

of it being the main supply to the South demand zone. 

Table  3-2 List of decision variables x 

Decision 
variable 

Description Lower 
limit 

Upper 
limit 

Category 

1 Pump mark Warragamba 0.3 1 Operational 
2 Pump mark Avon 0.3 1 Operational 
3 Level 1 restriction trigger 0.05 0.95 Operational 
4 Trigger increment 0.05 0.25 Operational 
5 Desalination plant capacity (ML/day) 0 1,000 Infrastructure 
6 Desalination plant trigger 0.05 0.95 Operational 
7 Welcome Reef capacity (ML) 0 1,000,000 Infrastructure 
8 Warragamba base gain 8,000 12,000 Operational 
9 Warragamba incremental gain 10 200 Operational 

10 Maximum Wollondilly flow during 
September to March (ML/month) 

12,200 100,000 Operational 

11 Maximum Wollondilly flow at other 
times (ML/month) 

18,300 100,000 Operational 

 
Decisions x3 and x4 define the first stage of the DCP. When the total storage 

fraction falls below the trigger x3, the first level of restrictions is imposed on outdoor 

domestic water use with a target reduction of 33%. If the total storage fraction falls 

below (x3 – x4), then the second level of restrictions is imposed with outdoor 

domestic water use reduced by 67%. If the total storage fraction falls below (x3 – 

2x4), then the third level of restrictions is imposed with outdoor domestic water use 

totally banned. 

Decisions x5 and x6 define the second stage of the DCP. When the total storage 

fraction falls below the trigger x6, the already-constructed desalination plant with 

daily capacity of x5 ML/day is activated. 

Decision x7 defines the capacity of Welcome Reef Reservoir.  

Decisions x8 and x9 define the priority for storing water in Warragamba. All the 

reservoirs in the WATHNET5 network flow program were assigned 20 carryover arcs 

which “store” water for the next time step. Each carryover arc has a capacity equal to 

1/20 of the reservoir capacity and a gain (i.e. negative cost) defined by 

( ) ( 1)* , 1, , 20Gain j BG j IG j      (3.6) 
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where BG is the base gain and IG is the incremental gain. See Chapter 2 for a fuller 

discussion on the way carryover arcs are implemented in WATHNET5. 

On account of Warragamba’s dominant storage, all reservoirs except 

Warragamba were assigned a base gain of 10,000 and an incremental gain of 100. 

This implements the so-called space rule that seeks to keep each reservoir with the 

same storage fraction. Decisions x8 and x9 define the base and incremental gain for 

Warragamba respectively. Depending on the values assigned to x8 and x9, water may 

be preferentially stored in Warragamba or in the rest of the system. 

Finally decisions x10 and x11 define the maximum monthly Wollondilly transfer 

capacity during September to March and at other times respectively. The lower limit 

on these decisions corresponds to that recommended by Scott and Grant (1997). 

These two decisions are active in the three-objective scenario and fixed in the other 

scenarios. These scenarios are discussed in Section 3-5. 

3-4-5 Objectives and Constraints 

Three objectives were judged to be relevant to the case study:  

Minimize frequency of restrictions (%): Erlanger and Neal (2005) state that 

the supply system should be capable of maintaining an adequate level of supply most 

of the time. Accordingly, the frequency of restrictions describes the fraction of the 

time consumers will not have an adequate level of supply. Cui and Kuczera (2005) 

used willingness–to-pay concepts to estimate the economic cost of restrictions from 

which they estimated the economically optimal frequency of restrictions. Here, the 

restriction frequency is made an explicit criterion in recognition of the difficulty of 

accurately estimating the economic cost and the political/social sensitivity that is 

associated with imposition of restrictions.  

Minimize the present worth cost ($): The present worth cost is the sum of 

capital and discounted expected operating costs and the costs of unplanned shortfalls. 

The capital cost represents the cost of building new infrastructure, which in this case 

study, is the Welcome Reef dam and/or the desalination plant. Table  3-3 summarizes 

the capital costs for Welcome Reef and the desalination plant. The capital cost model 

uses a binary function: if the asset is selected by the optimization, then the total cost 
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is the sum of a fixed setup cost and a cost proportional to the size of the asset; 

however, if the asset is not selected, the capital cost is zero. The operating cost 

includes the costs for pumping transfers from the Shoalhaven and operation of the 

desalination plant. A 5% discount rate was used. 

To ensure the DCP adequately copes with all droughts during the simulation 

period, solutions are constrained to avoid unplanned demand shortfalls. In this case 

study, an unplanned shortfall occurs when the system is unable to supply domestic 

indoor and commercial/industrial demand. This would occur when the highest 

restriction level, that bans all outdoor water use, is in force and the reservoirs become 

empty. 

The constraint on unplanned shortfalls is imposed using a penalty function 

approach. Here, a penalty of $100,000 per ML unplanned shortfall is added to the 

present worth cost. This penalty was selected to steer the optimization search away 

from solutions which allow reservoirs to “run dry” with consequent failure to supply 

minimum water needs. 

Table  3-3 Cost summary for infrastructure decision variables 

Decision Variable Fixed and Unit Costs 
Desalination plant capacity (ML/day) $1,250,000,000 + $4,000,000 ML/day 

Welcome Reef capacity (ML) $100,000,000 + $1000/ML storage 

 

Minimize environmental stress on the Wollondilly River: In this case study, 

the Wollondilly River between Wingecarribee and Warragamba Reservoirs has been 

identified as ecologically important. There is a vast literature that examines the 

ecological impacts of altered flow regimes. For example, Tharme (2003) documented 

over 200 individual environmental flow methodologies which have been utilized in 

44 countries. Arthington et al. (2004) outlined the characteristics, strengths and 

limitations of the category of techniques termed holistic methodologies. In another 

study, Petts (2009) reviewed the advances in environmental flow science over the 

past 30 years. In a more targeted review, Dewson et al. (2007) reviewed literature on 

the consequences of natural low flows and artificially reduced flows on habitant 

conditions and on invertebrate community structure, behaviour and biotic 
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interactions. These studies underscore the difficulty in characterizing ecological 

response.  

As the purpose of this case study is illustrative, a notional response function is 

developed based on the field studies by Scott and Grant (1997) who identified 

potentially adverse impacts of altered flow regimes on platypus and water bird 

populations in the Wollondilly River. To avoid these impacts, they recommended that 

the maximum monthly regulated flow be limited to 18,300 ML during the winter 

months from April to August, and to 12,200 ML during the summer months. The 

ecological impact of exceeding these recommended maxima is not well understood 

(Grant and Temple-Smith, 2003). Nonetheless, it is known that during the summer 

months, high flows have the highest impacts on the breeding of platypus and water 

bird populations, while the impacts of high flows are significantly less severe during 

the winter months. Accordingly, the following environmental stress metric was 

adopted to penalize the adoption of maximum regulated flow limits, x10 and x11, in 

excess of those recommended by Scott and Grant. 

12200
max 0, 5 if {Sept,..,March}

12200
( )

18300
max 0, if {April,..,August}

18300

m

m

q
m

Stress m
q

m

           
         

  (3.7) 

where mq is the actual regulated release in the Wollondilly in month m and ( )Stress m

is the penalty for exceeding the recommended flow limits in month m. The 

environmental stress criterion is the sum of the monthly stresses over the simulation.  

Unlike the first two criteria, the environmental stress criterion is based on limited 

field data and relies on subjective judgments such as the impact in summer months is 

5 times that of winter months and that the impact is cumulative. Consequently, the 

trade-offs between environmental stress and the other criteria need to be interpreted 

with the understanding that there is considerable epistemic uncertainty about the 

environmental impacts. 

Apart from the constraint on unplanned shortfalls, which was implemented using 

a penalty function approach, the only other constraints were the limits on the decision 

variables summarized in Table  3-2. 
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3-5 Case Study Scenarios 

Seven case study scenarios are used to illustrate the importance of using an 

optimization formulation that deals with the shortcomings identified in the literature 

review. The first two scenarios demonstrate the importance of jointly optimizing the 

full mix of decisions, particularly when there are interactions between short and long-

term and/or operational and infrastructure decision variables. Then, three different 

scenarios are used to demonstrate the influence of environmental constraints on 

system behaviour and the beneficial aspects of treating an environmental constraint as 

an objective. Finally, a comparison of two sets of scenarios with different input data 

length highlights the practically serious shortcoming arising from use historical or 

short-length synthetic data when there are expectations of high levels of drought 

security. A summary of these scenarios is presented in Table  3-4 as a reference. 

Table  3-4 Summary of case study scenarios 

Scenario 
number 

Decisions Optimization criteria Record 
length 
(years) 

Purpose 

1 1 to 9;  
10,11 set to upper 

limit 

Present worth cost 
Restriction frequency 

500 Study consequences 
of fixing 

operational 
decisions 2 5, 6, 7;  

10,11 set to upper 
limit  

Present worth cost  
Restriction frequency 

500 

3 1 to 9; 
10,11 set to lower 

limit 

Present worth cost  
Restriction frequency 

500 Contrast use of 
environmental 

constraints against 
environmental  

trade-offs 
4 1 to 9; 

10,11 set to upper 
limit 

Present worth cost 
Restriction frequency 

500 

5 1 to 11 Present worth cost 
Restriction frequency  
Environmental stress 

500 

6 1 to 9; 
10,11 set to upper 

limit 

Present worth cost 
Restriction frequency 

500 Contrast solutions 
with different levels 
of drought security 

7 1 to 9; 
10,11 set to upper 

limit 

Present worth cost 
Restriction frequency 

10,000 

For all seven scenarios, the εMOEA algorithm was run with 10 different initial 

random number seeds. Recognizing that an evolutionary algorithm cannot guarantee 

convergence to the Pareto-optimal solutions, the approximate Pareto-optimal 

solutions are taken here to be the non-dominated solutions from the 10 runs. The first 

four scenarios were run for 30,000 generations, while Scenario 5 was run for 100,000 
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generations and Scenarios 6 and 7 for 10,000 generations. εMOEA terminated its 

search if the maximum number of generations was reached or if the Pareto solutions 

did not change after 1000 generations. The εMOEA parameters were tuned to ensure 

good coverage and diversity along the Pareto front. The tuned parameters were the 

same as the parameters obtained in the tunning of εMOEA in Section 5-6-1: mutation 

rate = 0.01; crossover rate = 1.00; Inversion rate = 0.005; population size=100; and 

the hyper-box epsilons for the restriction criterion 0.005, for the present worth cost 

criterion $1000 and for environmental stress criterion 0.001.  

3-5-1 Joint Optimization of Operating and Infrastructure Decision 

Variables: Scenarios 1 and 2 

This section compares the approximate Pareto-optimal solutions for two 

scenarios which differ in the mix of decisions to be optimized. In Scenario 1, all 

operational and infrastructure decisions were optimized except for decisions 10 and 

11 which were fixed at their upper limit. In contrast, in Scenario 2, the optimization 

problem is akin to asking what is the best capacity expansion option with the rest of 

the system operated as normal. Accordingly, only two infrastructure decisions, the 

desalination plant and Welcome Reef reservoir capacities, and the desalination 

operational decision, the desalination plant trigger, were optimized; the remaining 

operational decisions were set to the following values guided by the desire to 

minimize operating costs and the frequency of restrictions: x1=0.3; x2=0.3; x3=0.5; 

x4=0.05; x8=10,000; x9=100. In each scenario, two objectives were considered, 

namely minimizing the present worth cost and restriction frequency. 

Figure  3-2 shows the approximate Pareto-optimal fronts for the two scenarios. 

There is a considerable gap between the two Pareto fronts with the scenario 1 Pareto 

front dominating the Scenario 2 front. By optimizing all the operational decisions, 

considerably lower present worth costs can be achieved for the same restriction 

frequency. Clearly fixing some of the operational decisions severely limited the 

ability of the optimization to take full advantage of the desalination plant and the 

Welcome Reef Reservoir. In Scenario 2, because the restriction trigger x3 was set to 

0.50, it was impossible to produce outcomes with a restriction frequency greater than 

20%. Likewise, the restriction frequency could not fall below 2.5%, because the 

desalination plant and Welcome Reef capacities were at their upper bounds. 
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Figure  3-2 Approximate Pareto-optimal fronts for Scenario 1 (all decisions 

optimized) and Scenario 2 (two infrastructure decisions and one operational decision 

optimized) 

While the gap between the Pareto fronts is dependent on the choice of values 

assigned to the decisions not optimized in Scenario 2, the important conclusion to be 

drawn is that when operational and infrastructure decisions interact, the failure to 

optimize all decisions can lead to inferior outcomes. Importantly, the ability to solve 

the optimization problem (3.2) makes it practically feasible to explore the whole 

decision space. 

3-5-2 Moving From Environmental Constraints to Trade-Offs: Scenarios 

3 to 5 

This section investigates the insights and benefits that arise from considering 

environmental trade-offs rather than imposing environmental constraints. Three 

scenarios are considered. The first two, Scenarios 3 and 4, establish the sensitivity of 

the system to decisions x10 and x11, which determine maximum regulated flows in the 

Wollondilly River.  
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3-5-2-1 Sensitivity to Environmental Flow Constraints – Scenarios 3 and 4 

The sensitivity of the system to the specification of environmental flow 

constraints is explored using Scenarios 3 and 4. In Scenario 3, x10 and x11 are fixed at 

the values recommended by Scott and Grant (1997), while in Scenario 4, x10 and x11 

are fixed at an arbitrarily large value that would not impose constraint on transfers 

from the Shoalhaven. Scenario 3 imposes nominally no environmental stress, while 

Scenario 4 would allow imposition of maximal environmental stress.  

Figure  3-3 presents the approximate Pareto-optimal solutions for Scenarios 3 and 

4. The imposition of the environmental flow constraint on the Wollondilly River 

substantially shifts the Pareto front outwards. For example, for a 10% restriction 

frequency, the imposition of the Wollondilly environmental flow constraint increases 

the present worth cost by ~$1,600 million. The reason for this sensitivity will be 

explained subsequently. Here the point to be made is that the imposition of 

environmental flow constraints can hide important trade-offs (Suen and Eheart, 2006) 

and consequently it may be more helpful to treat environmental needs as a criterion, 

albeit poorly defined, to better understand the trade-offs with other criteria. 

The solutions presented by the filled symbols in Figure  3-3 are the only solutions 

in which the desalination plant has been selected. The steepening of the Pareto front 

just before a desalination plant is included in the solution set is attributed to the high 

fixed cost of constructing the desalination plant. What is particularly striking about 

the filled solutions is the sensitivity of the desalination plant to the Wollondilly 

environmental flow constraint. When no constraint is imposed (Scenario 4), the 

desalination plant is only selected if solutions produce restriction frequencies of less 

than 5%. In contrast, if the constraint is imposed (Scenario 3), a desalination plant is 

selected for all solutions with restriction frequencies less than 17%. 
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Figure  3-3 Approximate Pareto-optimal front for Scenario 3 (with environmental 

flow constraints) and Scenario 4 (without environmental flow constraints). The filled-

in points represent solutions that include a desalination plant 

Each solution on the Pareto front in Figure  3-3 corresponds to a particular 

decision vector. To gain a better understanding of the sensitivity of the solutions to 

the Wollondilly constraint, the relationships between subsets of the approximate 

Pareto-optimal decisions for Scenarios 3 and 4 are analysed. Figure  3-4(a) shows the 

relationship between decision x5, the desalination plant capacity, and x6, the 

desalination plant trigger, for the solutions that adopt desalination. Regardless of the 

desalination plant capacity, the trigger level lies between 0.5 and 0.75 for both 

scenarios. However, when there is no constraint on Wollondilly releases (Scenario 4), 

the desalination capacity lies in the range 200 to 300 ML/day. In contrast, for 

Scenario 3, the capacity ranges from 100 to 500 ML/day suggesting interaction with 

other variables. Figure  3-4(b) shows the relationship between decision x8, the base 

gain for Warragamba, and x9, its incremental gain. When the Wollondilly flow 

constraint is imposed (Scenario 3), all base gains except one, are greater than or very 

close to 10,000 and most of the incremental gains are greater than 100. This means 

the WATHNET5 simulation model assigns the highest preference to keeping water in 

Warragamba and thus will seek to supply the Sydney zone from other sources before 
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accessing Warragamba. In contrast, when no constraint is imposed (Scenario 4), the 

situation is more complex with a negative linear relationship between base and 

incremental gain – increasing the base gain by 100 is offset by a reduction in 

incremental gain of about 50. This suggests there are complex interactions between 

the Warragamba gains and other decisions and, therefore, no simple interpretation can 

be made. Figure  3-4(c) displays the relationship between the capacity of Welcome 

Reef and restriction frequency. When the Wollondilly flow constraint is imposed, 

Welcome Reef has a consistently smaller capacity reflecting the fact that the 

Wollondilly constraint limits the utility of storage on the Shoalhaven River. 

Figure  3-4(d) shows the relationship between the decision x4, the level-one restriction 

trigger, and restriction frequency. There is little difference between Scenarios 3 and 4, 

with a lower trigger associated with lower restriction frequencies. Furthermore, in 

virtually all cases, decision x5 was at its lower limit of 0.05. This suggests that for the 

adopted criteria, the optimal strategy is to impose the severest restrictions as soon as 

possible – that said, such a strategy would be unlikely to be socially acceptable. 
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Figure  3-4 Comparison of approximate Pareto-optimal decisions for Scenario 3 (with 

environmental flow constraints) and Scenario 4 (without environmental flow 

constraints): (a) desalination plant capacity (ML/day) versus desalination plant 

trigger level; (b) Warragamba base and incremental gain; (c) Welcome Reef 

Capacity as a function of restriction frequency; and (d) restriction frequency versus 

level-one restriction trigger 
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Figure  3-5 displays the relationship between the two pump marks, x1 and x2, and 

the level-one restriction trigger x4 against the restriction frequency for each scenario. 

For the scenario with no environmental constraint (Scenario 4), the Warragamba 

pump marks associated with the lowest restriction frequency are low because the 

presence of the desalination plant reduces the dependence of the system on transfers 

from the Shoalhaven. Without the desalination plant, however, the Warragamba 

pump mark jumps close to 1 and then declines to about 0.3 as the restriction 

frequency increases. With the exception of some interaction with Warragamba pump 

marks for restriction frequencies between 10 and 20%, the Avon pump mark largely 

lies in the range 0.3 to 0.4. In contrast, Scenario 3 (environmental constraint imposed) 

reveals a very different behaviour for the Warragamba pump mark which is mainly in 

excess of 0.7. This suggests the Wollondilly flow constraint forces transfers to start 

much earlier in the Warragamba drawdown. As a result, there is a higher chance that 

Warragamba will spill resulting in a wasted transfer and an overall higher pump cost 

than would occur with a lower pump mark. 

The comparison of the Scenario 3 and 4 solutions highlights the complexity of 

the relationships between decisions. While Figure 3-3 displays a substantial cost 

trade-off between Scenarios 3 and 4, the analysis of Figures 3-4 and 3-5 suggests that 

it is not straightforward to interpret the difference in solutions. The interactions 

between decisions appear to involve, in many cases, more than two variables. This 

underscores the importance of conducting optimization using the full decision space. 
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Figure  3-5 Plot of Warragamba and Avon pump marks and level-one restriction 

trigger against restriction frequency for Scenario 3 (with environmental flow 

constraints) and Scenario 4 (without environmental flow constraints) 
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3-5-2-2 Three-Objective Case Study – Scenario 5 

Scenarios 3 and 4 represent the extremes in terms of environmental stress on the 

Wollondilly River and suggest there is a significant trade-off between the 

environmental stress and other objectives. For this reason, it is worth exploring the 

trade-offs more fully by undertaking an optimization using all three objectives, 

namely minimize restriction frequency, minimize present worth cost and minimize 

environmental stress on the Wollondilly River – this represents Scenario 5. 

Figure  3-6 presents all the approximate Pareto-optimal solutions plotted against 

restriction frequency and present worth cost with a color-coded scale for 

environmental stress. For a given restriction frequency, reducing the environmental 

stress increases the present worth cost. However, what is of greater interest and 

practical significance is the variability in trade-offs between present worth cost and 

environmental stress as restriction frequency changes. For restriction frequencies less 

than 7%, the difference in present worth cost between the best and worst 

environmental outcomes ranges between $600 and $700 million. However, between 

7% and 18%, the present worth cost difference increases by about a factor of two – 

this coincides with the transition to desalination. Beyond restrictions frequencies of 

18%, no solution uses desalination and the cost gap rapidly closes.  
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Figure  3-6 Approximate Pareto-optimal solutions for Scenario 5 are plotted against 

restriction frequency and present worth cost. The color code describes the 

environmental stress 
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the plot of total storage for the most severe drought in the first 500 years. It is 

observed that during this drought, the system ran dry but just avoided unplanned 

shortfalls. The fact that the optimized decisions just avoided unplanned shortfalls in 

the 500-year scenario would suggest the system becomes vulnerable when exposed to 

severer droughts. This is confirmed in Figure  3-7(b) which shows a plot of unplanned 

shortfall expressed as a percentage of total demand for the 10,000-year scenario. The 

limitations of the 500-year return period solution are abundantly clear. Unplanned 

shortfalls of up to 95% of demand, sustained for periods up to 6 months, would most 

likely lead to catastrophic outcomes. This vulnerability is unavoidable in systems 

totally reliant on climate-dependent sources of water. 
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Figure  3-7 Pareto solution from Scenario 6: (a) Time series of total storage during 

the most severe drought in the first 500 years; and (b) Time series of unplanned 

shortfalls, expressed as a percentage of demand, for 10,000 years 
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Figure  3-8 presents the approximate Pareto-optimal fronts for the present worth 

cost and restriction frequency criteria for the 500 and 10,000-year scenarios. The shift 

in the Pareto front is striking. For a 10% restriction frequency, the present worth cost 

increases from $2,600 million to $8,300 million. This large jump in cost arises from 

the need to avoid unplanned shortfalls in droughts considerably more severe than 

experienced in the 500-year scenario. To better understand the impact of using the 

10,000-year scenario, Table  3-5 presents three pairs of solutions on the Pareto fronts 

selected so that each pair has a similar restriction frequency. There are four key 

differences between the 500- and 10,000-year scenarios: 

1. For the 500-year scenario no desalination plant was selected, while in the 

10,000-year scenario, all solutions had the desalination plant capacity set 

close to the upper limit of 1000 ML/day.  

2. The Warragamba pump mark jumps from 30% in the 500-year scenario 

to 68% in the 10,000-year scenario to commence transfers from the 

Shoalhaven much earlier in any drought. 

3. For the 10,000-year scenario, the Warragamba base and incremental 

gains ensure that the Warragamba is preferentially drawn down. This 

strategy triggers transfers from the Shoalhaven earlier than if all 

reservoirs were balanced according to the space rule.  

4. All three solutions for the 500-year scenario opt for Welcome Reef close 

to its maximum capacity of 1,000,000 ML. In contrast, for the 10,000-

year scenario, the size of Welcome Reef decreases with increasing 

restriction frequency because the desalination plant capacity remains 

essentially unchanged close its maximum capacity. 
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Figure  3-8 Comparison of approximate Pareto frontier for Scenario 6 (500-year 

record) and Scenario 7 (10,000-year record) 
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3-6 Discussion 

The seven case study scenarios have demonstrated the value of an optimization 

methodology that addresses the three shortcomings identified in the previous 

literature. The overarching conclusion from the case study is that, in the case of urban 

headworks systems, failure to optimize the full mix of operational and infrastructure 

decisions, failure to allow for droughts with high return periods and failure to explore 

trade-offs implicit in “soft constraints” can produce demonstrably inferior solutions. 

The issue of drought security is of paramount importance for cities located in 

regions subject to severe prolonged droughts. The prospect of “running out of water” 

for an extended period would threaten the very existence of the city and its social and 

economic fabric. The case study highlighted the potentially serious shortcomings of 

solutions based on short historical or synthetic streamflow records. Very different 

approximately optimal solutions were found when securing against an expected 500- 

and a 10,000-year drought. For a 10% restriction frequency, the optimal solution for 

the 10,000-year record incurred a present worth cost over three times that for the 500-

year record. While the optimal solution for the 500-year scenario just avoided 

unplanned shortfalls in the worst drought of the 500-year record, the more severe 

droughts in the 10,000 year record resulted in extended and unsustainable periods of 

unplanned shortfalls. It is therefore critically important that simulation record lengths, 

over which system performance is evaluated, are sufficiently long to match drought 

security expectations. It is not an uncommon industry practice to design for the worst 

historical drought and then add a reserve [for example, Cloke and Samra (2009)]. 

Such an approach does not communicate the risk of running out of water, which in 

the case of a large urban system could be potentially catastrophic. By rerunning the 

optimization problem (3.2) for different record lengths (as done in Scenarios 6 and 7), 

the trade-off between drought security and other criteria can be explicitly explored to 

enable an informed decision. 

The issue of confidence in the drought return period deserves comment. The 

Pareto-optimal solutions given by (3.2) secure the system against droughts with 

return periods up to an expected value of N years. The actual return period may differ 

from the expected value. If one needs more confidence in the return period, the 

following pre-conditioning algorithm can be used to reduce uncertainty in the return 
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period for the N-year record: Generate M replicates of length N years; rank the 

replicates using a suitable low-flow statistic such as the minimum k-year sum; select 

the replicate corresponding to the median rank. 

Even if drought security is adequately accounted for, failure to optimize the full 

mix of infrastructure and operational decisions and explore trade-offs implicit in 

“soft” constraints can result in solutions that involve far greater economic cost than is 

necessary. The issue of soft constraints can be particularly challenging. To transform 

an environmental constraint into an objective requires the formulation of an 

environmental response function that maps decisions into a meaningful metric of 

environmental response. It is widely accepted that this is a difficult task constrained 

by limited data and difficulties in identifying causal mechanisms. It is acknowledged 

that the environmental stress function given by (3.7) is subjective and most likely 

incomplete. Accordingly, the main insight is not quantitative but an awareness that 

there are very significant trade-offs between environmental response and cost and that 

these trade-offs are a non-linear function of restriction frequency. In view of this, a 

strong case could be made to invest in studies to better inform the specification of the 

environmental response function and so better inform the trade-off process. Seen 

from this perspective, the optimization methodology advanced in this study is part of 

an iterative process involving progressive refinement of information and objectives. 

3-7 Conclusions 

This chapter has formulated and demonstrated a multi-objective optimization 

methodology for urban water supply headworks planning and management that 

produces solutions with demonstrably greater practical value. Its principal 

contribution is the identification of three practically significant shortcomings in the 

literature and a methodology to resolve these shortcomings. The case study, 

motivated by the headworks system for Sydney, Australia, demonstrated the 

significant manner in which these shortcomings can compromise the practical value 

of so-called Pareto-optimal solutions. 

Urban headworks systems are typically planned and operated in a manner that 

ensures a very low risk of “running out of water” or catastrophic water shortages. The 

case study demonstrates the very considerable sensitivity of Pareto-optimal solutions 
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to the return period of the worst drought. While this may seem self-evident, the 

literature has largely ignored this issue and repeatedly published optimal solutions 

conditioned on historical records or short stochastic records. Where high levels of 

drought security are required, such solutions are flawed and methodologies that 

produce such solutions should be avoided. Our approach addresses drought security 

explicitly. It identifies near-optimal solutions that are constrained so that the system 

does not “run dry” in severe droughts with expected return periods up to a specified 

value.  

In many cases, the operating rules that control the operation of the headworks 

system are conditioned on the system infrastructure. It is therefore vital in 

optimization studies, in which new system infrastructure is to be added or existing 

infrastructure modified, that key operating rules are optimized jointly with the 

infrastructure options. While this may substantially increase the dimension of the 

decision space, it is not worth the risk of obtaining significantly inferior solutions. In 

a similar vein, the imposition of “soft” constraints, such as the environmental flow 

constraints in the case study, runs the risk of missing potentially good solutions. In 

the case of constraints to which system performance is sensitive, their reformulation 

as objectives within a multi-objective optimization framework can enable a more 

thorough and computationally efficient assessment of trade-offs, an outcome that 

would be difficult to achieve using conventional sensitivity analysis. 

It is important that “good” solutions be found for the “right” problem. This study 

has made a significant contribution towards this goal by addressing identifiable 

shortcomings. However, in practice, planners have to deal with scenario uncertainty 

in which assumptions have to be made about model structure and exogenous factors 

such as system forcing and political and social constraints. There can be a 

considerable and difficult-to-quantify uncertainty about these scenarios. In such 

cases, one can argue that “good” solutions need to produce good outcomes across the 

range of plausible scenarios – in other words, “good” solutions need to be robust 

(Matalas and Fiering, 1977). There is a growing literature on robust optimization [see, 

for example, Deb and Gupta (2006)] whose concepts can be applied to the urban 

headworks problem. 



Chapter 3  69 

    

In this chapter, a steady-state scenario was considered in which demand was 

assumed to be constant over the simulation interval. However, in the face of growth 

in urban populations and accompanying growth in demand for water, optimizing 

decision for a steady-state scenario is insufficient. While it may identify “good” 

solutions for a particular population, it provides no information on how to best 

schedule future infrastructure investments and future changes in operating rules to 

cope with the growing demand. This is the topic of the next chapter. 
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4-1 Introduction 

With the worldwide trend of significant population growth in major cities, it is 

expected that most urban water resource systems will face a growing demand for 

water in addition to future climate change and changing expectations about level of 

service and acceptable impacts on environmental systems. In the face of such change, 

the performance of the water resource system is expected to change, most likely for 

the worse, resulting in the need to change the mix of infrastructure and operating 

rules. This chapter considers the scheduling capacity expansion problem from a 

multi-objective perspective. It generalizes the ideas developed in Chapter 3 to 

consider the question of when as well as how much should the infrastructure and 

operating rules be changed to serve the changing needs of a city. 

Capacity expansion involves the provision of additional yield by increasing the 

capacity of existing infrastructure and the construction of new infrastructure 

harvesting new sources of water. In its simplest manifestation, capacity expansion 

deals with sizing reservoirs. For example, Khaliquzzaman and Subhash (1997) 

developed a model for sizing multiple reservoirs. Mousavi and Ramamurthy (2000) 

proposed an optimization method to determine the optimal multi-reservoir system 

design for water supply by converting two objectives, minimum cost and minimum 

water deficit, to a single objective function. Nainis and Haimes (1975) applied a 

multilevel approach for capacity expansion in water resource systems; they extended 

classical benefit-cost analysis, describing their approach as dynamic benefit-cost 

analysis. Yang et al. (2007) applied the concept of multi-objective optimization to 

reservoir capacity expansion trading off two objectives, minimizing capital costs and 

minimizing costs arising from water shortages.  

Other studies have extended the concept of capacity expansion to include options 

other than those dealing with sizing reservoirs. For instance, Nakashima et al. (1986) 

developed a two-phase heuristic optimization technique to determine a water supply 

system layout and to size water production and transmission facilities. Hsu et al. 

(2008) developed a methodology to detect potential bottlenecks of a water 

distribution system with the aim of facilitating capacity expansion plans. 

Dziegielewski et al. (1992) incorporated drought management plans into their 

capacity expansion analysis; they assessed the trade-off between long-term and short-
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term options to manage drought by estimating the expected cost of coping with 

drought. Basagaoglu and Yazicigil (1994) considered capacity expansion in the 

context of a groundwater system.  

All the aforementioned studies have focused on decisions at the start of the 

planning period. However, decisions to expand capacity can be implemented at 

different points of time over the planning period to take advantage of delaying a 

portion of investment outlays. Although the construction of large infrastructure at the 

start of the planning period exploits the economies of scale, the time discounting of 

costs and the dynamics of growth may nonetheless favour smaller projects staged 

over the planning period. To analyse this trade-off a number of studies have 

considered scheduling expansion (Grossman and Marks, 1977; Knudsen and 

Rosbjerg, 1977; Braga et al., 1985; Kim and Yeh, 1986; Lund, 1987; Watkins Jr and 

McKinney, 1998; Gillig et al., 2001; Voivontas et al., 2003; Mahmoud, 2006; Chang 

et al., 2009) 

Scheduling expansion problems have typically been formulated to find the 

timing of predefined projects that minimizes the total present worth cost (PWC). 

Indeed, given this perspective, the main aim is to find the best sequence of projects 

(Luss, 1982). However, projects often can be implemented at different scales. Thus, 

the scheduling capacity problem can be generalized to find the optimum timing and 

scale of predefined projects – this is referred to as the scheduling capacity expansion 

problem.  

Figure  4-1 illustrates the scheduling capacity expansion process. It plots demand 

and yield as a function of time. Given the initial yield of the system is Y0, the system 

can meet demand up to time T1. At time T1, a decision is made to add extra yield Y1. 

As a result, system yield will exceed demand until time T2. In a similar manner, 

decisions are taken at later times to provide additional yield. Thus T1, T2 and so on 

represent change points at which decisions are made. The period between two 

consecutive change points is called a planning stage.  
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Figure  4-1 Schematic of scheduling capacity expansion over a planning horizon 

A number of studies have investigated the scheduling capacity expansion 

problem in a water resources context. Knudsen and Rosbjerg (1977) developed a 

general dynamic programming algorithm to find the optimal scheduling of water 

supply projects. Kim and Yeh (1986) introduced a heuristic solution procedure to find 

an optimal sequence of capacity expansion projects. Connarty and Dandy (1996) used 

genetic algorithm optimization to find the optimum sequence involving nine 

reservoirs for a case study based on the southeast Queensland headworks system. 

Watkins Jr and McKinney (1998) developed a model involving capacity expansion of 

an integrated surface and groundwater system. In a similar way, Chang et al. (2009) 

applied an optimization model to determine the capacity expansion schedule for 

groundwater supply. They considered a variety of expansion options involving 

surface and groundwater sources such as increasing borehole, reservoir and 

desalination plant capacity. Mahmoud (2006) employed a high dimension dynamic 

programming model to determine the optimal expansion schedule of a desalination 

plant. In all these studies solely infrastructure options were considered as decisions. 

The interaction between infrastructure and operating rule options was not considered.  
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The high capital costs and environmental impacts associated with expanding or 

building new major urban water infrastructure warrant the investigation of scheduling 

system operating rules such as reservoir operating rules, demand reduction policies 

and drought contingency plans, as a way of delaying or avoiding the expansion of 

water supply infrastructure (Lund, 1987; Rosenberg et al., 2008). Lund (1987) 

incorporated conservation rules into the scheduling capacity expansion problem. He 

demonstrated the benefit of using conservation rules to defer water treatment plant 

expansion. In Lund’s study the present worth of conservation cost and capacity 

expansion cost was minimized to find the optimum time to add new capacity to the 

system. However, a drawback of this approach is that discounting conservation costs 

can lead to higher levels of demand reduction in the future than in the present. This 

raises a socially-sensitive equity issue. 

Decision makers usually set the level and frequency of demand restrictions based 

on a level of service acceptable to the community. To identify what is acceptable, it is 

important to identify the trade-off between conservation (or restriction) and 

infrastructure costs. Rubinstein and Ortolano (1984) applied a dynamic programming 

algorithm to demonstrate the trade-off between the present value of the cost of 

implementing projects and the expected value of the costs to cope with emergencies, 

i.e. imposing restrictions. Although the coping cost in emergency situations is 

separated from project capital cost, the fact that the coping cost is a discounted cost 

suggests that severer restrictions may be deferred to future planning stages.  

All the reviewed studies suffer from one or more significant shortcomings: 

1. Most of the studies considered only a single objective. The drawback of using a 

single objective is that it is not possible to identify the trade-off between capital 

and operating costs and the cost of restrictions. However, the main drawback is 

that discounting restriction costs can lead to higher levels of demand reduction in 

the future than in the present. The optimization process hides a socially-sensitive 

equity.  

2. The studies optimized either decisions involving infrastructure alone or when 

operational decisions were included, they were not jointly optimized with 

infrastructure decisions. As shown in Chapter 3, changing the infrastructure 
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within a system without concomitant changes to operating rules can result in 

significantly inferior outcomes.  

3. All the studies failed to address drought security adequately primarily because 

insufficient streamflow data was used to sample severe droughts. As this issue 

was treated extensively in Chapter 3, it was not explicitly reviewed here.  

This chapter presents the application of a multi-objective optimization approach 

to scheduling capacity expansion in an urban water resource system that addresses the 

shortcomings identified in previous studies. The chapter is organized as follows: 

First, a new formulation of the multi-objective scheduling capacity expansion 

problem is presented. Using a case study based on the Canberra headworks system, 

twelve scenarios are investigated to demonstrate the significance of the identified 

shortcomings and how the proposed approach deals with them.  

4-2 The Multi-Objective Scheduling Capacity Expansion 

Problem 

This section presents a general formulation of the scheduling capacity expansion 

problem that addresses the shortcomings identified in previous applications. This 

involves generalizing the formulation presented in Section  3-3 to incorporate the 

staging of decisions and to allow for the stochastic nature of future inputs to the 

system. The section concludes with a review of optimization methods with the goal of 

identifying algorithms suited to the scheduling problem under consideration. 

4-2-1 Formulation 

Suppose the planning period of T years is subdivided into M planning stages with 

the ith stage commencing at time Ti. To account for climate variability and other 

stochastic inputs, the inputs are replicated N times over the planning period by 

sampling from a suitably constructed probability model of the inputs. For each 

replicate r, qtr is a vector of streamflow and climate values at multiple sites for year t, 

and dtr is a vector of unrestricted demand at multiple sites for year t. The notation :
r
u vQ

denotes the time series of vectors {qtr,t=u,…,v}. 

Let 1 }{ ,.., p
i i ix xx  denote a p-vector of decision variables that are implemented 

at the start of the ith planning stage. The decision vector can represent a mix of 



Chapter 4  76 

    

infrastructure options and operating rules. A solution is defined as a sequence of 

decision vectors over M planning stages x = {x1,..., xM}. 

The simulation model produces N replicates of response denoted by 

1: 1: 1:[ , , ], 1,.., r r r
T T TZ M x Q D r N  where 1:

r
TQ  and 1:

r
TD  represent the streamflow and 

demand for the rth replicate of the T-year planning period. The performance of the 

system is evaluated using K objective function  

1:1: 1: 1:
1 1 1

1( ) ( ) [ ( ( ))] ( ) ( ( )), 1,.., 
  

     t

T T N
r

i i it t t
t t r

f x t E f Z x t f Z x i K
N  (4.1) 

where 1 11: { ,.., : t }  j j jt x x T Tx
 

is the sequence of projects or decision vectors 

implemented on or before year t and ( ) t  is a temporal discounting factor. The term 

1: 1:( ( ))  i t tE f Z x is the expected value of the ith objective function for year t and is 

evaluated by averaging over the N replicates – the notation emphasizes the fact that 

the objective function value depends on the response from the simulation model 

which in turn depends on the decision values. 

The multi-objective optimization problem for the scheduling capacity expansion 

problem involves minimizing the K objective function over the decision space subject 

to constraints that include constraints on staging decisions, which are discussed 

further in Section 4-3-3. This formulation addresses the shortcomings identified in 

previous applications in the following ways: 

1. The use of multiple replicates of forcing data ensures that drought security can be 

adequately addressed. In Chapter 3, the issue of drought security was addressed 

by choosing an input record with sufficient length to ensure the system could cope 

with droughts up to a specified return period. In the case of scheduling this 

approach cannot be used because the planning period T is fixed and because the 

performance of the system changes over time. The use of multiple replicates of 

forcing data provides a solution to this problem. By selecting the appropriate 

number of replicates N, one can ensure the system will encounter droughts of 

appropriate severity. 
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2. The use of multiple replicates of forcing data ensures that the Pareto-optimal 

solutions are not dependent on any particular sequence of future climate and 

demand. This allows the use of a simulation model that can respond to changes in 

both infrastructure and operating rules. In turn, this enables both operating rules 

and infrastructure investments to be jointly optimized. The findings of Chapter 3 

suggest that such capability is likely to produce significant benefits.  

3. The potential equity issue arising from temporal discounting of costs can be 

addressed in a multi-objective context by exploring the trade-offs between 

economic and equity criteria. 

In the following sections, the benefits of this formulation will be investigated 

using a case study.  

4-2-2 Optimization Methods 

The section briefly reviews the optimization methods that have been employed in 

capacity expansion problems and identifies those best suited for solving the problem 

described in Section  4-2-1. A review of the literature shows that a variety of 

optimization methods have been used in capacity expansion problems.  

Approaches using some form of linear programming include Khaliquzzaman and 

Subhash (1997) who used network linear programming for sizing of reservoirs in a 

water resource system and Mousavi and Ramamurthy (2000) who integrated an 

optimal control theory approach with successive linear programming to determine the 

reservoir sizing. However, many capacity expansion problems are not amenable to 

linear programming approaches because of nonlinearities in objective functions and 

constraints. As a result, a number of studies have used nonlinear optimization 

methods. For instance, O'Laoghaire and Himmelblau (1974) applied the branch and 

bound method. Basagaoglu and Yazicigil (1994) developed three mixed-integer 

programming models to eliminate nonlinearity in the objective function. Watkins Jr 

and McKinney (1998) investigated application of two decomposition methods, 

namely generalized decomposition Benders and outer approximation, to solve 

problems involving cost functions with both discrete and nonlinear terms. Rosenberg 

et al. (2008) developed stochastic nonlinear programming to identify the benefit-

maximizing options involving conservation and leak reduction programs, 
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infrastructure expansions, and operational allocations under stochastic water 

availability.  

Dynamic programming (DP) (Bellman, 1957) has been used in the sizing and 

sequencing water resources projects (Butcher et al., 1969; Morin and Esogbue, 1971; 

Erlenkotter, 1973; Morin, 1973; Erlenkotter and Trippi, 1976; Grossman and Marks, 

1977; Knudsen and Rosbjerg, 1977). In a more recent study, Kim and Yeh (1986) 

presented a heuristic solution procedure that incorporates a shortest path DP method 

and a cyclic coordinate univariate direct search procedure. The main drawback of DP 

is that it can only be used for a relatively small number of projects because the 

number of possible states grows exponentially with the number of projects (Luss, 

1982). This so-called curse of dimensionality limits the application of DP (Hsu et al., 

2008). A variety of methods has been developed to overcome the curse of 

dimensionality. Some of these methods have been applied in capacity expansion 

problems. For instance, Mahmoud (2006) applied objective space dynamic 

programming (OSDP) in conjunction with mixed integer programming. OSDP is a 

variant of dynamic programming based on the use of the objective value function as 

the “state” variable to overcome the “curse of dimensionality” problem.  

Evolutionary methods such as genetic algorithms (GAs) do not suffer from the 

curse of dimensionality or issues related to handling nonlinear equations. Dandy et al. 

(1985) applied a GA to a water supply system to find optimum water price and 

project sequences. In a similar way, Chang et al. (2009) hybridized a GA and 

constrained differential dynamic programming (CDDP) to optimize capacity 

expansion schedules for groundwater supply. They used GA to investigate capacity 

expansion alternatives and then applied the CDDP algorithm to compute the optimal 

pumping policy associated with the selected expansion options. It is worth noting that 

this hierarchical optimization approach is likely to produce a sub-optimal solution 

because the pumping policy and capacity expansion were not jointly optimized. 

All of the above-mentioned studies have dealt only with a single objective. 

Rubinstein and Ortolano (1984) used DP in multi-objective capacity expansion. 

Because DP cannot optimize two objectives jointly, they weighted the multiple 

objectives to form a single objective. Yang et al. (2007) used a hierarchical approach 

to integrate a multi-objective genetic algorithm (MOGA) with CDDP; MOGA was 
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used to generate various combinations of reservoir capacity and CDDP was used to 

distribute optimal releases among reservoirs to satisfy water demand to the extent 

possible. 

Of the general approaches reviewed, those based on evolutionary methods 

appear best suited for the multi-objective problem described in the previous section. 

As discussed in Chapter 2, they can interface with complex non-linear simulation 

models, and handle multiple non-linear objectives and constraints. In view of the 

satisfactory performance of εMOEA in Chapter 3, it was decided to use εMOEA to 

solve the multi-objective scheduling capacity expansion problem associated with the 

case study presented in the remaining sections of this chapter. As in the case of the 

previous chapter, the main contribution in this chapter is with the improved problem 

formulation rather than the use of any particular optimization method. 

4-3 Case Study: Description and Problem Formulation 

This section introduces the case study for this chapter. It considers the water 

supply headworks system for Canberra, Australia’s capital city. An overview of the 

Canberra system is presented followed by a detailed formulation of the multi-

objective scheduling capacity expansion problem. 

4-3-1 Description of Canberra System 

The Canberra headworks system serves a current population of approximately 

420,000. Figure 4-2 presents a schematic of the headworks system. Water is 

harvested from two catchments, Cotter and Googong, which flank the city to the west 

and east respectively. A network of pipelines, pumping stations and treatment plants 

connects four reservoirs to the Canberra demand zone. Releases from the reservoirs 

have to meet, not only the consumptive needs of the Canberra urban area, but also 

environmental flow requirements defined in the water authority’s operating license.  
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Figure  4-2 Schematic of Canberra headworks system (Adapted from 

http://www.actew.com.au/Water%20and%20Sewerage%20Systems/Water%20Supply

%20System/ACT%20Water%20Supply%20Map.aspx, last visit 16/05/2012) 

A WATHNET5 model of the Canberra system was constructed. Figure  4-3 

presents the WATHNET5 schematic with the red nodes representing reservoirs, blue 

stream nodes, yellow demand zones, and black waste/sink nodes. The network of 

reservoirs, pumping stations and water treatment plants supplies water to the demand 

zone labelled “Canberra”. The existing system includes four reservoirs, Corin, 

Bendora, Cotter and Googong. The reservoirs have a total storage capacity of 206,732 

ML. Googong Reservoir is the largest reservoir in the system with a capacity of 

121,084 ML. There are two water treatment plants, Googong and Stromlo WTP, 

serving the Canberra population.  

In this case study, a hypothetical population scenario corresponding to a highly 

stressed system is presented. The base population is 175% of the current population 

and is assumed to grow at 1.2% per annum over the 30-year planning period. For 

simplicity, the same demand time series was used in all replicates; it is noted that this 

arrangement ignores the correlation between demand and climate and thus may 
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underestimate the consequences of drought. Figure 4-4 presents the 30-year demand 

time series with and without population growth. What is evident is the high 

seasonality of water consumption with outdoor water usage during the hot, dry 

summer months more than doubling unrestricted consumption. Superimposed on this 

seasonality in consumption is a 43% increase in demand over the 30-year planning 

period. Multiple replicates of monthly future streamflow data from 2010 to 2040 were 

sampled from a stochastic model calibrated to an historical record from 1871 to 2009 

– the stochastic model was the same as used in the Sydney case study in Chapter 3. 

To cater for this increase in demand, three options are available for augmenting 

supply – these are highlighted in the WATHNET5 schematic by dashed ovals. The 

first is to increase the capacity of Cotter Reservoir by up to 100,000 ML. The second 

is to build a new pump station to divert up to 6,000 ML/month from the 

Murrumbidgee River into Googong Reservoir. The third option is to install domestic 

rainwater tanks in up to 15,000 houses.  

 

Figure  4-3 WATHNET5 schematic of Canberra headworks system 
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Figure  4-4 Comparison of Canberra unrestricted demand time series with and 

without growth 

The high seasonality in water consumption due to summer outdoor water use 

indicates there is considerable scope for reducing demand by imposing restrictions on 

outdoor water use. In this study, four levels of restrictions are available with 

Table  4-1 presenting the ratio of restricted to unrestricted demand for each level. 

Table  4-1 Demand fractions for each restriction level 

Restriction level Ratio of restricted to unrestricted demand 
1 0.95 
2 0.80 
3 0.70 
4 0.65 

4-3-2 Decision Variables 

The 30-year planning horizon, 2010 to 2040, was divided into three equal-length 

planning stages with change points occurring in 2010, 2020 and 2030. Six decisions 

associated with operational and capacity expansion options are considered at each 

change point. These decisions and their lower and upper limits are presented in 

Table  4-2. 
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Three decisions involve capacity expansion, namely Cotter Reservoir capacity, 

Murrumbidgee diversion capacity and the number of installed domestic rainwater 

tanks. The Murrumbidgee pump storage trigger controls the pumping of water from 

the Murrumbidgee River to Googong Reservoir after the Murrumbidgee diversion 

pump station is commissioned; when the storage fraction in Googong Reservoir level 

falls below the trigger level, pumping from the Murrumbidgee River up to the 

maximum capacity of the pump station is initiated. The level-one restriction trigger x2 

and increment x
3 are operational decisions that regulate the occurrence of restrictions 

on consumption during a drought drawdown. If the total storage fraction falls below 

x2
 then the first restriction level is imposed. If the total storage fraction falls below x2

 

+ x
3, then the second level of restrictions is imposed and so on.  

Table  4-2 List of decision variables 

Decision Description 
Lower 
limit 

Upper 
limit 

Category 

1 Cotter capacity upgrade(ML) 0 100,000 
“Zero-one” capacity 

expansion 

2 
Level-one restriction storage 

trigger 
0 1 Operational 

3  
Restriction storage trigger 

increment  
0.05 0.25 Operational 

4 
Murrumbidgee diversion 

(ML/month) 
0 6,000 

“Zero-one” capacity 
expansion 

5 
Murrumbidgee pump storage 

trigger 
0 1 Operational 

6 Number of houses with tanks 0 15,000 
“Developing” capacity 

expansion 

4-3-3 Constraints 

A scheduling expansion problem is typically constrained. For example, decisions 

may belong to the “zero-one” category. If a non-zero value is assigned at a planning 

stage, then that value remains unchanged for all remaining planning stages. For 

example, if the capacity of Cotter is increased by 50,000 ML at the start of stage 2, 

then it will remain unchanged for the remainder of the planning period. Another 

decision category imposing a constraint is the “developing” category. In this case, the 

decision value cannot decrease at subsequent planning stages. For example, the 

number of installed domestic rainwater tanks can be increased but not decreased at 

each planning stage. The following equation formalizes these constraints: 
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where i
tx is the ith decision at planning stage t.  

4-3-4 Objective Functions 

All reviewed studies dealing with capacity expansion have sought to minimize 

the present worth of capital, operating and other economic costs. In the context of the 

formulation described in Section  4-2-1, the total present worth cost can be expressed 

as 

1: 1: 1:
1 1

1 1
( ) ( ) ( ) ( )

(1 ) 

  
 

T N
r r r
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t ro

f x C x CR x U x
N r

 (4.3) 

where ro is the discount rate and 1:( )r
t tC x  is the cost of infrastructure investments and 

operating costs for year t and replicate r, 1:( )r
t tCR x  is the economic cost of imposing 

restrictions on demand and 1:( )r
t tU x  is the cost of unplanned demand shortfalls. 

However, exclusive reliance on this objective can hide the trade-off between capital 

and operating costs and the social costs arising from restrictions and unplanned 

shortfalls.  

To explore this trade-off, two multi-objective formulations are considered: 

1. Two-objective trade-off 

The total present worth cost can be decomposed into its constituent costs to 

enable exploration of the trade-off between capital, operating and unplanned 

shortfall costs and costs due to restrictions. This yields the following two 

objective functions: 

1 1: 1:
1 1

1 1
min ( ) ( ) ( )
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The second objective minimizes the discounted cost of imposing restrictions. 

However, minimizing discounted restriction costs can produce undesirable social 

outcome. Due to discounting, the same frequency and severity of restrictions in 

the future will be being costed less than if the same were to occur in the present. 

As a result, minimization of discounted restriction costs can lead to a higher 

frequency and severity of restrictions in the future, a situation which often would 

be deemed politically unacceptable on social equity grounds.  

2. Three-objective trade-off 

One way to overcome this practically significant shortcoming is to avoid 

discounting restriction costs. However, this in itself will not assure equity (or 

equal sharing of the burden of restrictions) over planning stages. To achieve this 

it is necessary to introduce a third objective which seeks to minimize the 

difference in undiscounted restriction costs over the planning stages. These 

considerations lead to the following three objective functions: 

1 1: 1:
1 1

1 1
min ( ) ( ) ( )

(1 ) 
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The first objective seeks to minimize the present worth of capital, operating and 

unplanned shortfall costs. The second minimizes the expected cost of 

undiscounted restrictions in a planning stage. The third minimizes the standard 

deviation of undiscounted restriction costs between planning stages. This 

effectively seeks to ensure the burden of restrictions on the community is shared 

as fairly as is possible across all planning stages. 

The capital cost of the infrastructure options is summarized in Table 4-3. These 

costs are indicative and therefore should not be taken literally. Two capital items 

involve a binary choice: if the item is selected by the optimizer, then there is a fixed 
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setup cost along with a unit cost; if the item is not selected, there is zero capital cost. 

Operating costs include pumping and treatment costs for transfers from Cotter 

Reservoir ($250/ML), from the Murrumbidgee River ($285/ML), from Bendora 

Reservoir ($84/ML) to Stromlo water treatment plant, from the Murrumbidgee River 

to Googong Reservoir ($23/ML), and from Stromlo water treatment plant to Googong 

Reservoir ($36/ML). The unplanned shortfall cost was set to $1.0x109/ML to ensure 

the optimizer steered away from solutions that resulted in “running out of water”.  

Table  4-3 Infrastructure cost of capacity expansion decisions for Canberra water 

headworks system 

Decision Variable Unit Cost 
Cotter Reservoir capacity upgrade $50x106 + $1923/ML 

Murrumbidgee diversion $20 x106 + $42623/ML 
Water tanks $3000/ house 

 

As a postscript to this section, a brief comment is made on how the economic 

cost of restrictions is estimated in this case study. Recognizing that restrictions in 

Australian urban areas are mainly targeted at outdoor water use (which in the case of 

Canberra is substantial; see Figure 4-4), the method developed by Dandy (1992) was 

adopted. Dandy assumed that:  

i. All the households have the same price elasticity of demand for outdoor 

use 

ii. The price elasticity for outdoor use is constant within the range 

considered. 

iii. All households reduce their outdoor consumption in the same proportion 

in response to water restrictions. 

Using a willingness-to-pay analysis, he showed that the economic cost of 

restrictions in a drought event could be approximated by 

1

[1 (1 ) ]
1








  


CR PQ R
 (4.9) 

where CR is the economic cost due to imposition of restrictions, P is the current price 

of water, Q is the unrestricted outdoor consumption, R is the fraction by which 
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consumption is reduced and  is the price elasticity of demand for outdoor water. In 

this study, following Cui (2003), ε  and  P were set equal to -0.25 and $600/kL 

respectively.  

4-4 Case Study Scenarios and Results 

The section presents the main findings of the case study. Twelve scenarios are 

described with the intent of demonstrating in a structured manner the limitations of 

earlier applications and the performance of the formulation described in Section  4-2-

1. The section then reports and discusses the results of each scenario. 

4-4-1 Description of Scenarios 

Table 4-4 summarizes 12 scenarios used to demonstrate the benefits of applying 

the multi-objective formulation of Section  4-2-1 to scheduling capacity expansion 

problems. The scenarios differ in the number of objectives, the demand growth rate, 

staging of infrastructure and operational decisions, the discount rate and the initial 

volume of the reservoirs. The first two scenarios are used to demonstrate the need for 

capacity expansion in the presence of demand growth. The next four scenarios, 

Scenarios 3 to 6, are used to demonstrate the benefit of scheduling operational 

decisions in addition to infrastructure decisions. The next three scenarios, Scenarios 7 

to 9, investigate the sensitivity of results to choice of discount rate. Unlike the first 8 

scenarios which minimize present worth cost, the remaining scenarios, Scenarios 10 

to 12, use multiple objectives to demonstrate the advantages arising from of using 

multi-objective optimization particularly with regard to trading off equity against 

economic efficiency. Finally, the sensitivity of initial conditions is investigated. In all 

scenarios except Scenario 12, reservoirs are assumed to be full at the start of the first 

planning stage. In Scenario 12, the initial storage in the reservoirs is set to the historic 

25th percentile volume. 

For each scenario, the simulations were conducted using 50 replicates of 

stochastically generated streamflow. It is acknowledged that more replicates would be 

needed to ensure a high level of drought security. However, as this issue was already 

addressed in Chapter 3, a reduced number of replicates was adopted to make the 

computation manageable for the twelve scenarios. Because εMOEA is a probabilistic 

method, it is unable to guarantee convergence to the Pareto front. Accordingly, to 
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reduce the chance of premature convergence affecting the results, each scenario was 

optimized 10 times with different random number seeds. The results presented in the 

subsequent sections are the best out of 10 runs. As in the Chapter 3 case study, the 

εMOEA parameters were: probability of crossover = 1, probability of mutation = 0.01 

and probability of inversion = 0.005. The maximum number of iterations for the 

single objective scenarios, 1 to 9, was set equal to 10,000, while for the multiple-

objective scenarios, 10 to 12, it was set to 30,000. The MOEA epsilon was set to 

100,000 for the single objective cases and to 10,000 for the first objective and 1000 

for the second and third objectives in the multi-objective optimization. 



 

 

Table  4-4 List of scenarios 

Scenario 
Number of 
objectives 

Growth 
rate 

Timing of decision 
Discount 

rate 
Initial reservoir 

volume 
Purpose 

Infrastructural Operational 

1 1 0 N/A Any stage 5% Full 
Impact of demand growth 

2 1 1.2% N/A Any stage 5% Full 
3 1 1.2% Stage 1 Stage 1 5% Full 

Consequence of different timing of 
infrastructural and operational decisions 

4 1 1.2% Stage 1 Any stage 5% Full 
5 1 1.2% Any stage Stage 1 5% Full 
6 1 1.2% Any stage Any stage 5% Full 
7 1 1.2% Any stage Any stage 1% Full 

Sensitivity to choice of discount rate 8 1 1.2% Any stage Any stage 5% Full 
9 1 1.2% Any stage Any stage 10% Full 

10 2 1.2% Any stage Any stage 5% Full Use multiple objectives to deal with equity 
issues 11 3 1.2% Any stage Any stage 5% Full 

12 3 1.2% Any stage Any stage 5% 25th-percentile Sensitivity to initial reservoir volumes 
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4-4-2 Scenarios 1 and 2: Impact of Demand Growth 

Scenarios 1 and 2 are used to justify the need for capacity expansion in the 

Canberra case study. Scenario 1 has the annual demand growth rate set to zero, while 

Scenario 2 has the rate set to 1.2%. In both scenarios, no capacity expansion is 

allowed; only operational decisions namely level one restriction trigger and trigger 

increment can be changed at each planning stage. 

Figure  4-5 shows the demand, unplanned shortfalls and restricted demand time 

series for the first replicate of Scenario 1 using the optimized decisions. Unplanned 

shortfalls occur when the demand, permitted by the DCP, cannot be supplied – such 

shortfalls typically would occur when reservoirs run dry or when limitations in 

transfer capacity result in demand zones being supplied less than the minimum 

permitted by the DCP. Restricted demand represents amount of water supplied to the 

demand node after restrictions imposed. Because there is no demand growth, the 

system could avoid unplanned shortfalls by imposing frequent restrictions. However, 

in the presence of demand growth in Scenario 2, Figure 4-6 shows that unplanned 

shortfalls could not be avoided even though severe and frequent restrictions were 

imposed. This highlights the need to augment the capacity of the system to cater for 

the demand growth, as optimizing operational decisions alone cannot prevent the 

occurrence of unplanned shortfalls. Table  4-5 presents the total present worth cost 

and associated decisions for the two scenarios. Because unplanned shortfalls attract a 

punitive cost, the total present worth cost for Scenario 2 is an order of magnitude 

higher than for Scenario 1. The decisions controlling the imposition of restrictions are 

at or close to their most severe values for Scenario 2. When the level-one trigger is 

1.0 and trigger increment is 0.05, the highest frequency and maximum severity of 

restrictions are imposed on the system. It is noted that the restriction decisions in 

Scenario 2 did not assume the most severe values in the third stage. This is because 

shortfalls were unavoidable even when the restriction decisions were set at their most 

severe values. Figure  4-7 shows the total storage time series for the first replicate of 

Scenario 2. There are two periods during which the system was empty and, 

consequently, unplanned shortfalls occurred. These shortfalls occurred even if the 

stage-three level-one trigger was 1.00 and the trigger increment was 0.05. 
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Figure  4-5 Demand, unplanned shortfalls and restricted demand for the first 

replicate of Scenario 1 

 

Figure  4-6 Demand, unplanned shortfalls and restricted demand for the first 

replicate of Scenario 2 
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Figure  4-7 Time series of total storage for the first replicate of Scenario 2 

 

Table  4-5 Comparison of present worth cost and decisions for Scenarios 1 and 2 

Scenario 

Total 
present 
worth 
cost 

($million) 

Planning stage 1 Planning stage 2 Planning stage 3 

Level-one 
restriction 

trigger 

Trigger  
increment 

Level-one 
restriction 

trigger 

Trigger  
increment 

Level-one 
restriction 

trigger  

Trigger 
increment 

1 362 0.949 0.221 0.933 0.180 0.8 0.248 

2 3690 1.000 0.0524 1.000 0.0516 0.827 0.0892 
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4-4-3 Scenarios 3 to 6: Impact of Different Timing of Infrastructure and 

Operational Decisions 

Four scenarios are used to investigate the relative impacts of scheduling 

infrastructure (or capital) and operational (or operating rule) decisions over the 

planning period. These scenarios differ in the timing of their infrastructure and 

operational decisions. In Scenario 3, all decisions are made at start of the first 

planning stage. In Scenario 4, all infrastructure decisions are made at start of the first 

planning stage, while operational decisions are flexible in the sense they can be 

changed at any of the planning stages. In contrast, in Scenario 5 all operational 

decisions are made at start of the first planning stage, while infrastructure decisions 

are flexible. Finally, in Scenario 6, all decisions can be made at any planning stage 

subject to constraints on the infrastructure decisions. 

Table  4-6 and 4-7 present respectively the costs and decisions for the four 

scenarios. To provide a better understanding of how these scenarios deal with 

restrictions, the undiscounted restriction cost is presented for each planning stage in 

Table 4-6. Scenario 5 has effectively the same total PWC as Scenario 3. One would 

expect Scenario 5 to produce a smaller total PWC than Scenario 3; the fact that 

Scenario 5 produced a marginally higher cost reflects premature convergence by the 

optimization algorithm. Bearing this in mind, the near equal costs for Scenarios 3 and 

5 suggests that for the Canberra system, scheduling infrastructure decisions while 

fixing operational decisions offers no significant benefit over making all decisions at 

the start of the planning horizon. Scenario 5 has the highest restriction cost of the four 

scenarios indicating a heavy reliance on imposing restrictions. The level-one 

restriction trigger of 0.815 and the trigger increment of 0.144 confirm the selection of 

a severe restriction policy. Of interest is the finding that the Cotter upgrade was not 

selected and the Murrumbidgee diversion was delayed to stage two.  

  

 

 



 

 

Table  4-6 Results for Scenarios 3 to 6 

Scenario Total 
present 
worth 
cost 

($million) 

Capital and 
operational 

present worth 
cost ($million) 

Total present 
worth cost of 
restrictions 
($million) 

Undiscounted restriction cost 
($million) 

Average of 
undiscounted 

restriction cost over 
three stages 
($million) 

Standard deviation 
of undiscounted 
restriction costs 
over three stages 

($million) 

Stage 1 Stage 2 Stage 3 

3 462 393 69 0.060 50.6 99.7 57.3 54.1 
4 445 391 54 0 59.4 89.6 49.6 50.5 
5 464 362 102 64.94 55.3 94.3 71.5 47.9 
6 444 396 48 0.056 34.4 53.2 35.9 36.9 

Table  4-7 Optimum decisions for Scenarios 3 to 6 

 Scenario 3 Scenario 4  Scenario 5  Scenario 6  
 Planning stage Planning stage Planning stage Planning stage 

Decisions One Two Three One Two Three One Two Three One Two Three 

Cotter capacity 
upgrade(ML) 

0 
Same as 

stage 
one 

Same as 
stage one 

0 
Same as 

stage 
one 

Same as 
stage one 

0 0 0 0 0 0 

Level-one 
restriction storage 

trigger 
0.77 

Same as 
stage 
one 

Same as 
stage one 

0.019 0.831 0.627 0.815 
Same as 

stage 
one 

Same as 
stage one 

0.4 0.627 0.752 

Restriction storage 
trigger increment  

0.111 
Same as 

stage 
one 

Same as 
stage one 

0.224 0.149 0.063 0.144 
Same as 

stage 
one 

Same as 
stage one 

0.096 0.055 0.149 

Murrumbidgee 
diversion 

(ML/month) 
2460 

Same as 
stage 
one 

Same as 
stage one 

2414 
Same as 

stage 
one 

Same as 
stage one 

0 3091 3091 0 4221 4221 

Murrumbidgee 
pump storage 

trigger 
1 

Same as 
stage 
one 

Same as 
stage one 

1 1 1 0.989 
Same as 

stage 
one 

Same as 
stage one 

----- 1 1 

Number of houses 
with tanks 

0 
Same as 

stage 
one 

Same as 
stage one 

0 
Same as 

stage 
one 

Same as 
stage one 

0 0 0 0 0 0 
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The capital and operational present worth costs for Scenarios 3, 4 and 6 are 

almost the same but their restriction present worth costs vary significantly. Out of 

these scenarios, Scenario 3 had the highest restriction cost. This is because all 

decisions had to be made at the start of the first planning stage. In contrast, Scenarios 

4 and 6 exploited the flexibility of adjusting restriction triggers over the planning 

period. In stage one, a low level-one trigger could be adopted because that stage 

experienced the lowest demand and benefited the most from the full state of the 

storages at the start of the planning period – indeed virtually no restrictions were 

experienced in the first stage. In the subsequent stages, the trigger was increased to 

cope with the growing demand.  

Scenario 6 demonstrates the benefits of having all decisions flexible. It has the 

lowest average restriction cost among all scenarios. Since this scenario could 

schedule capacity expansion decisions, it defers the capacity expansion of the 

Murrumbidgee diversion to the second planning stage. This choice takes advantage of 

the discounted construction cost and the fact that the system is initially full. As a 

result, even though Scenario 6 has a substantially larger Murrumbidgee diversion 

capacity than Scenarios 3 and 4, its discounted capital and operational costs are 

virtually the same. 

Not surprisingly, the optimal strategy is to provide flexibility in timing and 

sizing for both infrastructure and operational decisions. This is clearly demonstrated 

in Table  4-6 where Scenario 6 has the lowest total PWC and also the lowest 

restriction present worth cost of restriction. However, the more significant finding is 

that virtually all of the benefit from scheduling comes from allowing the operational 

decisions to change over time. Indeed, having flexible operational rules reduces the 

incidence of severe restrictions particularly in the last planning stage. It appears this 

allows the optimizer to better adapt to the fact that in the first stage the initially full 

system and the lowest demand impose the least stress on the system, while in the third 

stage, the benefit of the initially full system is no longer “felt” and the demand is at its 

highest. 
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4-4-4 Scenarios 7 to 9: Sensitivity to Discount Rate 

In all of above mentioned scenarios, the discount rate was set equal to 5%. 

However, as Luss (1982) has observed, the estimation of discount rate is subjective. 

The reality is that typically the discount rate used by the private sector is different 

from that used by the public sector. To investigate the effect of discount rate on the 

optimum solution, three scenarios with different discount rates, i.e. 1%, 5% and 10% 

are compared. The total present worth costs are presented in Table  4-8. There are 

large differences in PWC across the scenarios due to the spread in discount rates. The 

PWC of Scenario 7 is about three times greater than for Scenario 9. However, the 

important point here is that the discount rate exerts considerable influence on the 

severity and frequency of restrictions over the three stages. As shown in Table  4-8, 

Scenarios 8 and 9 have very similar total discounted restriction costs but their average 

discounted restriction costs over the three stages are vastly different. It is also evident 

that the higher the discount rate, the higher the undiscounted restriction costs in later 

planning stages.  

The optimum decisions for the three scenarios are presented in Table  4-9. It is 

noted that only in Scenario 7 is the Cotter upgrade option invoked with an upgrade 

capacity of 52,000 ML. This occurs because the use of the low discount rate of 1% 

would result in a blowout of restriction costs if additional storage were not available 

to reduce the frequency of restrictions.  

The overall conclusion is that the discount rate determines how much reliance 

the optimizer places on the imposition of restrictions to avoid unplanned shortfalls 

and on how restrictions are distributed over the planning stages. Comparison of 

Scenarios 7 to 9 clearly shows that as the discount rate increases, the investment in 

infrastructure decreases at the expense of more restrictions imposed in future stages.  

 



 

 

 

Table  4-8 Comparison of three scenarios with different discount rates 

Scenario Discount 
rate % 

Total 
present 
worth 
cost 

($million) 

Capital and 
Operational 

cost 
($million) 

Total 
present 

worth cost 
of 

restrictions 
($million)) 

Undiscounted restriction cost 
($million) 

Average of 
undiscounted 

restriction cost 
over three 

stages 
($million) 

Standard 
deviation of 

restriction costs 
over three stages 

($million) 

Stage 1 Stage 2 Stage 3 

7 1 775 708 67 0 33.3 48.8 27.4 28.6 
8 5 444 396 48 0.056 34.4 53.2 35.9 36.9 
9 10 267 221 46 45.66 50.3 80.5 58.8 53.4 

 

Table  4-9 Optimum decisions for Scenarios 7 to 9 

 Scenario 7 (r=1%) Scenario 8 (r=5%) Scenario 9 (r=10%) 
 Planning stage Planning stage Planning stage 

Decisions One Two Three One Two Three One Two Three 
Cotter capacity upgrade(ML) 0 0 14352 0 0 0 0 0 0 

Level-one restriction storage trigger 0.004 0.815 0.752 0.4 0.627 0.752 0.8 0.68 0.647 
Restriction storage trigger increment  0.18 0.162 0.162 0.096 0.055 0.149 0.211 0.061 0.061 

Murrumbidgee diversion (ML/month) 3995 3995 3995 0 4221 4221 0 3091 3091 
Murrumbidgee pump storage trigger 1 1 1 ---- 1 1 ---- 1 1 

Number of houses with tanks 0 0 0 0 0 0 0 0 0 
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4-4-5 Scenarios 10 and 11: Revealing Equity Tradeoffs  

In all the scenarios considered so far, only one objective, namely minimization of 

the total present worth cost, was considered. This cost includes capital, operating and 

restriction costs – unplanned shortfall costs were always zero because of their 

punitive unit value. However, there is a trade-off between capital, operating and 

unplanned shortfall costs and restriction costs. Indeed, more investment in 

infrastructure results in less need to impose restrictions and vice versa. To 

demonstrate this trade-off, Scenario 10 considers a multi-objective optimization 

jointly minimizing capital, operating and unplanned shortfall costs and minimizing 

restriction costs. The two objectives are described by Eqs. (4.4) and (4.5). In 

Figure  4-8 the Pareto frontier for Scenario 10 is presented. The results for Scenario 8, 

which is a special case of Scenario 10, are also shown in this figure. As expected, the 

Scenario 8 result is located on the Pareto frontier, which confirms that Scenario 8 

represents only one of the possible solutions for Scenario 10.  

Figure  4-8 shows there is a distinct trade-off between capital, operating and 

unplanned shortfall costs and the cost of imposing restrictions. Indeed, the restriction 

cost can be very large in the absence of sufficient infrastructure investment. The 

figure shows there is initially a very favourable trade-off between higher capital 

investment and reduced restriction cost (see labeled points 1 and 2) followed by a 

progressively worsening trade-off culminating with virtually zero restriction costs 

when the present worth of capital, operating and unplanned shortfall costs exceeds 

$750 million. Up to $750 million, there are no unplanned shortfall costs. However, 

beyond that, unplanned shortfall costs grow rapidly to produce minute reductions in 

restriction costs. This segment of the Pareto frontier would be of no interest to a 

decision maker. It is presented here to document the full Pareto frontier. 
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Figure  4-8 Pareto frontier for Scenario 10 

Discounting can hide the significance of the impact of restrictions on the 

community. To highlight this, five solutions on the Pareto frontier in Figure 4–8 were 

selected with Table 4–10 providing a summary of these solutions. The results show 

that for all the solutions, progressively more severe restrictions are imposed in future 

planning stages highlighting the implicit inequity associated with discounting. 

To deal explicitly with this equity issue and to offer the opportunity to moderate 

differences across planning stages, the three-objective formulation described by Eqs. 

(4.6) to (4.8) is considered in Scenario 11. The first objective minimizes total present 

worth of capital, operating and unplanned shortfall costs, while the remaining two 

objectives introduce equity considerations. The second objective seeks to minimize 

the magnitude of restriction costs across the stages while the third objective seeks to 

minimize the difference in restriction costs between stages.  

Figure  4-9 presents the Pareto frontier for Scenario 11. What is striking is the 

absence of a surface. The trade-offs essentially lie on a one-dimensional thread. Once 

significant restriction costs are encountered, there is a strong almost linear 

dependence between objectives two and three, namely the average cost of 

undiscounted restrictions and the variability of cost across stages. To offer more 

insight into this trade-off, Figure  4-10 to Figure  4-12 present projections of the three-
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dimensional Pareto front onto three two-dimensional objective planes. Figure  4-10 

shows that the average of undiscounted restriction costs decreases substantially as 

capital, operating and unplanned shortfall cost increases. A similar trend can be seen 

in Figure  4-11 for the standard deviation of undiscounted restriction costs. 

Figure  4-12 presents the trade-off between the average and standard deviation of 

undiscounted restriction costs. It shows that, unless there is sufficient investment to 

eliminate restrictions, it is not possible to share equally the burden of restrictions 

across stages; moreover, as the average level of restriction costs in a stage grows 

there will be greater variability across the stages.  

To highlight the difference between Scenarios 10 and 11, five solutions were 

selected for each scenario in order to have equal capital and operating costs for each 

pair of solutions. Table  4-11 presents the results. What is striking is the fact that 

Scenario 11 produces solutions with lower average (undiscounted) restriction costs 

across the planning stages and less variability in restriction cost between stages. This 

significantly improved equity outcome arises solely from the choice of objective 

functions. The use of three objectives enabled a more thorough exploration of cost 

and equity with the consequent identification of solutions with more equitable 

outcomes for the same capital and operating present worth cost.  

 

 

 

 

 



 

 

Table  4-10 Comparison of five solutions marked on Figure  4-8 of Pareto frontier for Scenario 10 

Solution 
label 

Capital and 
operational 

present worth 
cost ($million) 

Unplanned 
shortfall 

cost 
($million) 

Restrictions 
present worth 

cost 
($million) 

Undiscounted Restriction 
cost ($million) 

Average of 
undiscounted 

restriction cost over 
three stages 
($million) 

Standard deviation 
of undiscounted 
restriction costs 
over three stages 

($million) Stage 1 Stage 2 Stage 3 

1 323 0 221 77.6 195.8 240.6 171 94.7 

2 373 0 79.9 4.0 80.7 132.9 72.5 67.2 

3 525 0 9.86 0 7.9 21.1 9.68 12.7 

4 779.47 910.54 0.8067 0 0 0.269 0.0897 0.1268 

5 779.39 1360.61 0.0085 0 0 0.028 0.0096 0.0136 

 

Table  4-11 Comparison of five marked solutions on the Pareto frontiers for Scenarios 10 and 11 

 Scenario 10 Scenario 11 

Solution 
label 

Capital and 
operational 

present 
worth cost 
($million) 

Unplanned 
shortfall 

cost 
($million) 

Average of 
undiscounted 

restriction cost 
over three stages 

($million) 

Standard 
deviation of 

undiscounted 
restriction costs 
over three stages 

($million) 

Capital 
and 

operational 
present 

worth cost 
($million) 

Unplanned 
shortfall 

cost 
($million) 

Average of 
undiscounted 

restriction cost 
over three 

stages 
($million) 

Standard 
deviation of 

undiscounted 
restriction costs 
over three stages 

($million) 

1 323 0 171 94.7 323 0 116 61 

2 373 0 72.5 67.2 373 0 51.4 40.7 

3 525 0 9.68 12.7 525 0 9.47 12.2 

4 779.47 910.54 0.0897 0.1268 780.94 907.67 0.0897 0.1268 

5 779.39 1360.61 0.0096 0.0136 779.49 1362.12 0.0096 0.0136 
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Figure  4-9 Pareto frontier for Scenario 11 

 

Figure  4-10 Pareto trade-off between present worth of capital, operational and 

unplanned shortfall costs and average of undiscounted restriction costs over three 

planning stages for Scenario 11 
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Figure  4-11 Pareto trade-off between present worth capital, operational and 

unplanned shortfall cost and standard deviation of undiscounted restriction costs 

over three planning stages for Scenario 11 

 

 

Figure  4-12 Pareto trade-off between the average and standard deviation of 

undiscounted restriction costs over three planning stages for Scenario 11 
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Table  4-12 presents the decisions associated with the five Scenario 11 solutions 

in Table  4-11. The table ranks the solutions from smallest to highest capital and 

operating cost. The first solution has no capacity expansion except for the 

Murrumbidgee diversion in the second planning stage. The first and second stage 

level-one restriction triggers are very high indicating a high frequency of restrictions. 

In solutions 2 and 3, the size of the Murrumbidgee diversion increases. For solution 3, 

the Murrumbidgee diversion is brought forward to stage one and a rollout of 

rainwater tanks over the three stages is adopted with the number of tanks hitting the 

upper bound in stage two. Offsetting this increased capital investment are lower level-

one restriction triggers leading to a lower frequency of restrictions. Solutions 4 and 5 

are the most costly with the Cotter upgrade and Murrumbidgee diversion maximized 

in stage one and rainwater tank installations maximized in stage two. The level-one 

restriction triggers are low resulting in virtual elimination of restrictions. It is noted 

that a huge increase in unplanned shortfall cost is required to bring about a minute 

reduction in restriction costs. As already noted, this is due to the punitive cost 

assigned to unplanned shortfalls. Of interest, all solutions opted for the 

Murrumbidgee diversion and set the pump trigger to one. This maximizes the yield 

from what is the most cost effective capital option.  

 

 



 

 

Table  4-12 Decisions associated with the five solutions presented in Table  4-11 for Scenario 11 
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3 525 0 0 0.195 5774 1 1256 0 0.564 0.097 5774 1 5932 0 0.568 0.119 5774 1 14686 

4 1690 100000 0.215 0.179 6000 1 1699 100000 0.039 0.182 6000 1 14941 100000 0.125 0.074 6000 1 15000 

5 2140 100000 0.219 0.235 6000 1 175 100000 0 0.186 6000 1 14882 100000 0.019 0.122 6000 1 15000 
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4-4-6 Scenario 12: Sensitivity to Initial Conditions 

In the previous scenarios, it was observed that in the first planning stage 

restrictions were typically low. This is attributed to the fact that the system was full at 

the start of stage one and that stage one had the lowest demand. To separate the 

contributions of these two factors, this section investigates the sensitivity of the 

Pareto-optimal solutions to the initial reservoir storage. In Scenario 11, the reservoirs 

are full at the start of the planning period, while in Scenario 12 the initial volume of 

all reservoirs was set equal to the 25th percentile storage volumes obtained from a 

130-year simulation using historical flows and demand corresponding to the start of 

the planning period. Figure  4-13 shows the Pareto frontiers for Scenarios 11 and 12 

together with five selected solutions on each front. These solutions were selected to 

produce five pairs where each member of a pair was located on a different Pareto 

front but had a near equal average undiscounted restriction cost. Tables 4-13 and 4-14 

present the three objective function values for each solution as well as the 

undiscounted restriction costs for each stage for Scenarios 11 and 12 respectively.  

There is a striking shift in the Pareto frontier with all five Scenario 12 solutions 

experiencing unplanned shortfalls during the first stage of the planning horizon. In 

some of the replicates, there was a significant drought during the first planning stage. 

The optimizer was unable to find a solution that could compensate for the low starting 

storage in those replicates. There was no solution that could avoid “running out of 

water”.  

 

 

 



 

 

 

Figure  4-13 Comparison of Pareto frontiers for Scenarios 11 and 12 showing location of 5 selected solutions on each front 
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More insight about the impact of initial conditions can be obtained by examining 

Tables 4-15 and 4-16, which present the decisions associated with each marked 

solution in Figure 4–13 for Scenarios 11 and 12 respectively. In stage one of Scenario 

11, there is limited uptake of rainwater tanks and no expansion of Cotter capacity 

(except for Solution 5). In contrast, for stage one of Scenario 12, all solutions opt for 

maximum rainwater tank uptake and maximum Murrumbidgee diversion capacity. 

This is because these options can immediately provide additional yield to the system. 

Upgrading Cotter in stage one is not as effective because there is no storage in the 

upgraded Cotter at the start of stage one. Consequently, if in a replicate a drought 

occurs at the start of stage one, the upgraded Cotter remains effectively empty unable 

to moderate the impact of the drought. In contrast, rainwater tanks will harvest any 

available roof runoff, while the Murrumbidgee diversion will be able to divert any 

river flow to Googong. In Scenario 12, solutions 3, 4 and 5 upgrade Cotter to 

maximum capacity in stage one in order to reduce the burden of restrictions. 

In this case study, the optimal scheduling policy is profoundly affected by the 

initial state of the storages. The low initial storage in Scenario 12 makes the system 

much more vulnerable to drought in the first planning stage. The stage-one decisions 

reflect this vulnerability. They bring forward to stage one the maximum capital 

investments that were deferred to latter stages in Scenario 11. Despite this, it was not 

possible to avoid “running out of water” in some of the replicates. The short-term 

vulnerability in Scenario 12 could not be adequately managed given the constraints 

on the capital investment mix. 

 

 



 

 

Table  4-13 Comparison of five points marked on Figure  4-13 of Pareto frontier for Scenario 11 

Solution 

Capital and 
operational 

present worth 
cost ($million) 

Unplanned shortfall 
cost ($million) 

Undiscounted restriction cost 
($million) 

Average of 
undiscounted 

restriction cost over 
three stages 
($million) 

Standard deviation of 
undiscounted restriction 
costs over three stages 

($million) Stage 1 Stage 2 Stage 3 

1 333.46 0 130.85 96.56 85.01 104.14 54.98 

2 454.93 0 10.33 31.83 33.65 25.26 21.87 

3 612.70 0 0.03 5.41 6.90 4.11 5.51 

4 679.29 0 0.00 3.75 1.34 1.69 2.39 

5 779.67 100.91 0.00 0.00 1.01 0.335 0.474 

 

Table  4-14 Comparison of five points marked on Figure  4-13 of Pareto frontier for Scenario 12 

Solution 

Capital and 
operational 

present worth cost 
($million) 

Unplanned 
shortfall cost 

($million) 

Undiscounted restriction cost 
($million) 

Average of 
undiscounted 

restriction cost over 
three stages 
($million) 

Standard deviation of 
undiscounted 

restriction costs over 
three stages 
($million) Stage 1 Stage 2 Stage 3 

1 647.85 7514.72 39.98 53.12 217.48 103.52 86.36 
2 673.77 7517.62 27.32 29.76 19.24 25.43 19.16 
3 801.62 11947.28 10.88 0.08 1.31 4.09 5.42 
4 802.39 17234.71 5.27 0.00 0.03 1.76 2.48 
5 802.81 22108.49 0.99 0.00 0.01 0.334 0.463 

 

 



 

 

Table  4-15 Optimum decisions for five solutions presented in Table  4-13 for Scenario 11 
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1 0 1.000 0.169 0 0.216 0 0 0.937 0.150 2414 1 0 0 0.761 0.145 2414 1.000 0 
2 0 0.820 0.216 4391 1.000 0 0 0.882 0.234 4391 1 0 0 0.627 0.134 4391 1.000 0 
3 0 0.263 0.197 6000 1.000 486 52000 0.522 0.123 6000 1 885 52000 0.502 0.148 6000 1.000 4804 
4 0 0.004 0.223 6000 1.000 372 100000 0.337 0.051 6000 1 896 100000 0.298 0.099 6000 1.000 13431 
5 100000 0.176 0.183 6000 1.000 409 100000 0.004 0.249 6000 1 413 100000 0.341 0.173 6000 1.000 15000 

 

 

   



 

 

Table  4-16 Optimum decisions for five solutions presented in Table  4-14 for Scenario 12 
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1 0 0.471 0.096 6000 1.000 15000 52000 0.741 0.150 6000 0.498 15000 52000 0.980 0.059 6000 0.996 15000 
2 0 0.318 0.095 6000 1.000 14941 47765 0.643 0.149 6000 0.498 15000 47765 0.576 0.097 6000 1.000 15000 
3 100000 0.165 0.155 6000 0.996 14941 100000 0.259 0.193 6000 1 15000 100000 0.247 0.062 6000 1.000 15000 
4 100000 0.157 0.155 6000 0.988 14941 100000 0.016 0.190 6000 1 15000 100000 0.020 0.134 6000 1.000 15000 
5 100000 0.000 0.150 6000 0.996 14941 100000 0.008 0.197 6000 1 15000 100000 0.004 0.137 6000 1.000 15000 
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4-5 Summary 

Various options are available to water agencies responsible for meeting the 

growing demand for water arising from urban population growth. These options 

include operational decisions such as imposing restrictions, rules controlling water 

transfers and allocations, policies promoting more efficient water use and 

infrastructure investments such as harvesting new sources of water. Because the 

performance of the urban water resource system will change over time, the challenge 

is to find the best combination of these options over both time and scale (or 

magnitude).  

Many studies have investigated methods to find the optimum size and timing of 

capacity expansion of projects with the aim of minimizing the total present worth 

cost. However, review of these studies has identified a number of shortcomings. 

These include the following: 

1. Minimizing a single objective based on present worth cost hides a socially-

sensitive equity issue related to the sharing of the burden of restrictions across 

planning stages. 

2. Failure to optimize jointly infrastructure and operational decisions. 

3. Failure to address drought security adequately due to inadequate sampling of 

severe droughts. 

This chapter presented a multi-objective formulation that addresses these 

shortcomings in a practicable manner. The formulation uses a multi-replicate 

approach in which multiple realizations of future inputs are simulated. It permits use 

of a full simulation model that enables the tracking of system performance over time 

and enables the optimization algorithm to search for the best mix of both 

infrastructure and operational decisions.  

A case study based on the Canberra headworks system demonstrated the ability 

of this formulation to address in a practical manner the shortcomings identified in 

earlier studies. The following conclusions based on the case study are considered to 

have applicability beyond the case study itself: 
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1. The joint scheduling of operational and infrastructure decisions can produce 

significantly better outcomes than just scheduling infrastructure decisions. Indeed, 

in the Canberra case study, virtually all of the benefit of scheduling over time was 

attributed to scheduling operational decisions associated with the imposition of 

restrictions. This arose because the first stage of the planning period benefited 

from the storages being full at the start of the stage.  

2. Minimizing total present worth cost can lead to more severe and frequent 

restrictions in future planning stages. This is potentially an unacceptable social 

outcome. The magnitude of this inequity is dependent on the discount rate with 

higher discount rates leading to greater inequity in restriction outcomes. 

3. The use of a multi-objective formulation, which minimizes the present cost of 

capital, operating and unplanned shortfall costs together with the level and 

variability of restriction costs across planning stages, makes the equity issue 

visible to a decision maker. 

4. The optimal scheduling solution can be sensitive to the initial state of the system. 

In the Canberra case study, a low initial storage elevated the short-term 

vulnerability of the system to drought. This is by no means an undesirable 

finding. Indeed, by being able to schedule both infrastructure and operational 

decisions across multiple planning stages, it is possible to adapt to changing 

circumstances. This capability is arguably the most important feature of the 

formulation developed in this chapter. 

5. The current generation of multi-objective evolutionary algorithms makes the 

multi-objective scheduling capacity expansion formulation developed in this 

chapter practicable for urban systems with complexity similar to the Canberra 

case study. The case study was conducted on a four-core desktop computer with 

typical run times of 16 hours. With access to large computer clusters, more 

complex systems can be studied with many more replicates than the 50 considered 

in this chapter. 

 

 



 

 

 

 

 

 

Equation Chapter (Next) Section 1 

Chapter 5 

Efficient Multi-Objective 

Optimization Methods for 

Computationally-Intensive Urban 

Water Resources Models 

Equation Chapter 5 Section 1 
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5-1 Introduction 

The preceding chapters have focused on the formulation of multi-objective 

optimization (MOO) problems in the context of urban water management. In those 

chapters the εMOEA method was employed to search for Pareto-optimal solutions. 

This chapter considers the question whether there are MOO methods superior to 

εMOEA for urban water resource applications. A number of heuristic algorithms, 

including evolutionary, particle swarm and ant colony optimization methods, have 

been developed for solving multi-objective problems (Czyz et al., 1998; Deb, 2001; 

Deb et al., 2002a; Coello Coello, 2006; Huang et al., 2006; Martı´nez et al., 2007). 

The performance of these algorithms has been investigated mostly using well-known 

benchmark problems (Zitzler et al., 2000; Deb et al., 2002b) with their results being 

compared using a range of indicators that measure the convergence and diversity of 

the solutions after a relatively large pre-defined number of function evaluations.  

Unlike the benchmark problems, water resource applications typically use 

computationally expensive methods for computing their objective functions (Pierro et 

al., 2009). For example, in the case study presented in the previous chapter involving 

the Canberra headworks system, a 30-year simulation with 50 replicates at monthly 

time steps takes approximately 6 CPU seconds, which is several orders of magnitude 

longer than the standard benchmark problems. Hence for an optimization involving 

10,000 function evaluations, the turnaround time of nearly 17 hours is totally 

dominated by the simulation model rather than by the optimization algorithm. Our 

experience with urban water supply headworks models using long stochastically 

generated streamflow at monthly time steps is that simulation run times of the order 

of several minutes are typical. For instance, in the case study presented in Chapter 3 

involving the Sydney headworks system, a 10,000-year simulation at monthly time 

steps takes about 40 seconds. These long simulation run times are considered an 

impediment to the practical uptake of MOO. While parallel computing can reduce 

turnaround times (Cui and Kuczera, 2005), there is also a strong imperative to 

identify or develop MOO methods which not only converge to the Pareto-optimal 

front with good diversity but do so with the fewest possible function evaluations. This 

is the subject of this chapter.  
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In recent years a considerable number of studies have sought to address this 

issue; for example Eskandari et al. (2007), Pierro et al. (2009), Santana-Quintero et al. 

(2006) and Toscano-Pulido et al. (2007). The focus of these studies was identifying 

which algorithm can produce a better Pareto front after a relatively small number of 

evaluations. Durillo et al. (2010) took a different perspective comparing the number 

of evaluations to reach a certain convergence criterion threshold for seven multi-

objective methods, namely NSGA-II, SPEA2, PAES, SMPSO, GDE3, AbYSS and 

MOCell. They used three convergence criteria, the number of Pareto-optimal 

solutions and the convergence and hypervolume metrics and concluded that SMPSO 

was the best of the seven algorithms.  

In the context of urban water resource optimization, the question as to which 

MOO method is the best choice for a given function evaluations budget remains 

unexplored. There is no study comparing the efficacy of MOO methods constrained 

by a limited number of function evaluations nor is there any study evaluating the 

number of evaluations to reach convergence thresholds. The primary objective of this 

chapter is to address this question.  

A recent development in probabilistic optimization, called ant colony 

optimization (ACO), was proposed by Dorigo et al. (1996). ACO emulates the 

foraging behaviour exhibited by ant colonies in their search for food. ACO algorithms 

have been successfully applied to a number of benchmark combinatorial optimization 

problems, such as the travelling salesman and quadratic assignment problems (Dorigo 

and Stützle, 2004; Stützle et al., 2010). The good performance of ACO in single 

objective optimization motivated researchers to apply ACO to multi-objective 

problems (Iredi, 2001; Shelokar et al., 2002; García-Martínez, 2004; Alaya et al., 

2007; Angus, 2007b; Bui et al., 2008; Angus and Woodward, 2009). However, these 

studies have focussed on combinatorial problems, while many engineering problems 

include decision variables that have a continuous, real-valued domain. A limited 

number of studies have applied multi-objective ACO methods to problems with 

continuous real-valued search spaces (Shelokar et al., 2002; Angus, 2007a; Afshar et 

al., 2009).  

Computationally expensive problems such as encountered in urban water 

resources provide a strong motivation to develop new optimization methods that 
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require fewer evaluations to converge. The secondary objective of this chapter is to 

explore whether the multi-objective ant colony optimization approach can be 

successfully adapted to solve computationally-intensive problems typical of urban 

water resources.  

This chapter is organized as follows: First, a review of existing MOO methods is 

presented from which three benchmark methods are selected. This is followed by a 

discussion of the performance metrics to be used in the case studies and a brief 

description of the two urban water resource case studies and the benchmark problems. 

Then the principles of ant colony optimization are described after which a new 

MOACO algorithm, MOACO-state, incorporating the best features of the existing 

MOACO algorithms, is proposed and further enhanced. Finally, using two urban 

water resource case studies, the performance of the new MOACO methods is 

compared against three benchmark methods. 

5-2 Review of Existing MOO Methods 

The last decade has seen considerable effort towards developing efficient MOO 

methods for computationally-intensive problems. Eskandari et al. (2007) proposed a 

new algorithm called fast Pareto genetic algorithm (FastPGA) which uses a new 

fitness assignment and ranking strategy. They compared their method against NSGA-

II using four benchmark problems known as the Ziztler-Deb-Thiele (ZDT) test suite 

and found that FastPGA outperformed NSGA-II in terms of convergence and 

diversity after completion of a relatively small number of evaluations (6500 and 

10000). Pierro et al. (2009) applied two hybrid algorithms, ParEGO and LEMMO, to 

optimize cost and pressure deficit in water distribution network systems and 

compared their performance against an evolutionary algorithm called PESA-II. They 

found for a medium sized network that LEMMO generated solutions after 10,000 

evaluations that were comparable with those produced by PESA-II results after 

100,000 evaluations. However, for a large network involving 600 decisions LEMMO 

did not perform well. Santana-Quintero et al. (2006) developed a new particle swarm 

optimization in conjunction of a local search method. They tested their method for 

two sets of benchmark problems, ZDT and DTLZ. After 4,000 evaluations, the 

method was shown to outperform the well-established benchmark NSGA-II algorithm 

for the ZDT problems but it did not perform well for DTLZ problems. In a similar 
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study, Toscano-Pulido et al. (2007) presented an efficient multi-objective particle 

swarm optimization method EMOPOS, which, after 2000 evaluations, produced a 

solution closer to the optimal Pareto front than did NSGA-II for the same number of 

evaluations.  

The focus of above-mentioned studies was evaluating the performance of 

algorithms after a pre-defined number of evaluations. This type of analysis can be 

approached from a different perspective. For instance, Nebro et al. (2008) ranked six 

multi-objective optimization methods, namely NSGA-II, SPEA2, PAES, OMOPSO, 

AbYSS and MOCell, according to the number of evaluations required to produce 

Pareto front with a certain accuracy. They found MOCell, OMOPSO, and AbYSS the 

most competitive algorithms. In a similar study, Durillo et al. (2010) analysed the 

performance of similar multi-objective methods, except SMPSO replaced OMOPSO 

and GDE3 was added, using three criteria, the number of Pareto-optimal solutions, 

the convergence metric and the hypervolume metric. They concluded that SMPSO 

performed the best of the seven algorithms. 

In this study three methods, namely NSGA-II, εMOEA and SMPSO, were 

selected for comparison based on their usage and performance reported in the 

literature and on the availability of computer codes. NSGA-II has been widely 

applied in the MOO literature, often being used as a benchmark for new developed 

methods in computationally-intensive problems (Santana-Quintero et al., 2006; 

Eskandari et al., 2007; Toscano-Pulido et al., 2007; Nebro et al., 2008; Durillo et al., 

2010). In Chapter 2 it was argued that εMOEA may perform better than NSGA-II and 

thus was selected for use in the case studies reported in Chapters 3 and 4. 

Accordingly, εMOEA was selected to test this; moreover, there is no study evaluating 

the performance of εMOEA when the number of evaluations is constrained. Finally, 

SMPSO was chosen because of its superior performance among the seven state-of-

the-art MOO methods evaluated by Durillo et al. (2010).  

In following sections SMPSO and NSGA-II algorithms are described briefly. 

The εMOEA algorithm was described in Chapter 2. 
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5-2-1 SMPSO 

Particle swarm optimization (PSO) is a population-based metaheuristic method 

mimicking the social behavior of bird flocking. The initial ideas on particle swarms 

were proposed by Kennedy and Eberhart (1995). Since then many studies have been 

carried out to develop and improve PSO; see Poli et al. (2007). PSO has been shown 

to produce good results at a very low computational cost (Kennedy et al., 2001; 

Engelbrecht, 2006; Reyes-Sierra and Coello, 2006).  

The good performance of PSO in single objective optimization applications 

motivated researchers to extend it to multi-objective problems. Moore and Chapman 

developed the first multi-objective implementation of PSO in 1999 and since then 

more than twenty different methods have been reported (Reyes-Sierra and Coello, 

2006). 

Each particle in PSO is composed of three vectors, its current position ix


, the 

best solution that particle i has viewed ip


, and its current velocity iv


. The position ix


represents a set of coordinates in the search space. Each particle is influenced by the 

best point found by any member of its topological neighbourhood. This best particle 

is denoted as a leader ( gp


). In multi-objective optimization problems all non-

dominated solutions are considered to be leaders. During the optimization search the 

velocity of each particle is iteratively adjusted so that the particle stochastically 

fluctuates around ip


 and gp


. In speed-constrained multi-objective PSO (SMPSO), 

the leader particle gp


 is selected by sampling two solutions from the external archive 

and selecting the one which has the largest crowding distance to its neighbor in the 

archive (Nebro et al., 2009). 

Figure  5-1  presents pseudo code for SMPSO. The first step initializes the swarm 

by assigning a population of particles with random positions and velocities. The 

second step initializes the leaders in the external archive with non-dominated 

solutions in swarm. Thereafter the main loop of algorithm is executed until 

termination criteria met. Termination may be defined by a maximum number of 

evaluations, the attainment of a prescribed accuracy or the maximum number of 

evaluations during which no improvement occurs.  
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The first step in the main loop is to calculate velocity of each particle as follows: 

1 1 2 2( ) ( . ( 1) . .( ) . .( ))i i i i g iv t X w v t C r p x C r p x      
     

 (5.1) 

where w is the inertia weight of the particle which controls the trade-off between 

global and local experiences, r1 and r2 represent random numbers uniformly 

distributed in [0,1], C1 and C2 are specific parameters which control the effect of the 

local and global best particles and X is defined by 

2

2

2 4
X

  


    (5.2)
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 (5.3) 

Nebro et al. (2009) introduced a mechanism to bind further the speed of each 

variable j in particle i as follows: 
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 (5.4) 

where 

( )

2
j j

j

upper limit lower limit
delta


  (5.5) 

The position of each particle is updated based on: 

( ) ( 1) ( )i i ix t x t v t  
  

 (5.6) 

After updating the particle’s position, the polynomial mutation (Deb, 2001) on 

particle’s velocity is performed with a given probability. The objective functions 

values associated with the new particle are evaluated. If these values dominate the 

objective values at the previous position, the position of the particle is updated and 

the new objective values are compared with the leaders archive. If the new solution 
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dominates a leader in the archive then that leader will be replaced by the new 

solution. On termination, the leader archive represents the approximate Pareto-

optimal solutions.  

In SMPSO, as in NSGA-II, the leader archive size is fixed. As a result, the 

number of leaders can exceed the archive size. Thus, if the leader archive is full and a 

new solution does not dominate any archive solution, a crowding distance approach is 

used to decide which particle may be retained in the leader archive (Nebro et al., 

2009).  

This study used the jMetal code, which is a Java implementation of SMPSO by 

Durillo and Nebro (2011). 

 

Figure  5-1 Pseudo code for the SMPSO algorithm (Adapted from Nebro et al. (2009)) 

5-2-2 NSGA-II 

The non-dominated sorting genetic algorithm (NSGA) proposed by Srinivas and 

Deb (1994) was one of the first EAs in context of multi-objective application. 

Criticisms of the NSGA approach included the high computational complexity of 

non-dominated sorting, lack of elitism and the need for specifying sharing parameters 

(Deb et al., 2002a). Deb et al. (2002a) addressed these issues by introducing the fast 

non-dominated sorting approach and crowding distance feature in an improved 

version of NSGA called NSGA-II.  

In the fast non-dominated sorting approach, two entities are calculated for each 

solution, p, in the population: 1) the domination count, np, which is the number of 

solutions that dominate solution p; and 2) Sp which is a set of solutions that the 

Initialize Swarm 
Initialize LeadersArchive 
while (termination criteria are not met) do 

ComputeVelocity()/ Eqs. (5.1) to (5.5) 
UpdatePosition() / Eq.  (5.6) 
Mutation()  
Evaluation() 
UpdateParticlesMemory() 
UpdateLeadersArchive() 

end while 
ReturnLeadersArchive() 
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solution p dominates. The domination count of all solutions in the first non-

dominated front is zero. For each solution p with np = 0, each member (q) of its Sp set, 

is visited and the associated np of that member is reduced by one. If np of any member 

becomes zero it means this member belongs to the next non-dominated front. When 

all the members of the current front are visited, the procedure is repeated for the next 

non-dominated front. This process terminates when all fronts have been identified.  

The crowding-distance approach is the second key enhancement to NSGA. The 

first step is to sort the population according to each normalized objective function 

value in ascending order. Then, for each objective function, solutions with the 

smallest and largest function values are assigned an infinite distance value. For all 

other intermediate solutions, a distance equal to the absolute normalized difference in 

each function value of the two adjacent solutions is calculated. This procedure is 

repeated for all objectives. The crowding-distance is then calculated as the sum of 

individual distance values corresponding to each objective. In Figure  5-2, which 

depicts the minimization of two objectives, the crowding-distance of the ith solution is 

the average side length of the cuboid.  

 

Figure  5-2 Illustration of crowding-distance algorithm. The points marked as filled 

circles are solutions of the same non-dominated front (Deb et al., 2002a) 

The NSGA-II algorithm is straightforward to apply. Initially, a random 

population P0 is created. Then the population is sorted into a number of non-

dominated fronts using a fast non-dominated sorting approach, after which each 
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solution is assigned a fitness value equal to its non-domination front. Applying 

selection, recombination and mutation operators creates an offspring population Q0 of 

population size (N). As presented in Figure  5-3, the two populations are combined to 

form R of size 2N. Combining all previous and current population members ensures 

elitism. Then, all solutions are sorted using non-dominated sorting approach. The 

solutions belonging to the first non-dominated front are the best solutions in the 

combined population. If the number of solutions in the first front is fewer than N then 

all the solutions will be selected. The remaining members of the new population are 

selected from the subsequent non-dominated fronts in the order of their rankings. This 

process continues until all slots in the new population filled. During this process, it is 

possible to have more number of solutions in a front compared with the available 

slots in the new population. In this case, application of the crowding-distance 

algorithm ensures solutions within the less crowded regions will be selected (Deb et 

al., 2002a). This improves the diversity of population.  

 

 

Figure  5-3 NSGA-II procedure (Deb et al., 2002a) 

 

The NSGA-II code used in this study was obtained from the Kanpur Genetic 

Algorithms Laboratory web site (http://www.iitk.ac.in/kangal/codes.shtml, last visit 

14/05/2012). 

Crowding distance 
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5-3 Evaluation of Multi-Objective Performance 

Various performance metrics for measuring the quality of a Pareto-optimal set 

have been proposed to compare the performance of different multi-objective 

algorithms (Deb, 2001). However, there is no clear consensus in the literature on how 

the performance of multi-objective methods should be evaluated or compared. Deb 

and Jain (2002) suggested the use of metrics to characterize the two main functional 

objectives of MOO methods, proximity and diversity. Hadka and Reed (2011) 

investigated a broad range of performance metrics including hypervolume, 

generational distance (GD), inverse generational distance, additive epsilon indicator 

(ε+-indicator) and spread. They recommended three metrics to characterize the three 

main functional objectives of MOO methods associated with proximity, diversity and 

consistency. The GD and hypervolume metrics are used to assess proximity and 

diversity respectively, while the ε+-indicator is used to assess the consistency of the 

proximity of solutions. In this chapter the three measures recommended by Hadka 

and Reed (2011) were used to compares the competing MOO algorithms. In all of 

these measures, normalized objective values are used. The following sections discuss 

each of these measures in more detail. 

5-3-1 Convergence (Generational Distance) Metric 

The convergence metric is a proximity or distance measure describing how close 

a set of non-dominated solutions is to the Pareto-optimal front (Van Veldhuizen and 

Lamont, 2000). The minimum normalized Euclidean distance from each point i in the 

non-dominated solution set (Q) to the reference solution set (P*) is calculated using 

the following equation (Deb and Jain, 2002) 

*
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max min
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( ) ( )
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n n

i
j P
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f i f j
d

f f 






 
 
 

    (5.7) 

where max
nf and min

nf are the maximum and minimum function values of the nth 

objective function in P*. fn(i) is the nth function value of point i in the set Q and fn(j) 

is the nth function value of point j in the set P*. K is the number of objectives. The 

average of di is taken to be the convergence metric. The smaller the value of this 

metric, the closer the solutions are to the reference solution set.  
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The principal shortcoming of the convergence metric is that it contains no 

information about diversity. For instance, consider Figure  5-4, which illustrates two 

sets of non-dominated solutions along with the reference set. Set 1 has a smaller 

convergence metric than set 2. However, it is clear that set 2 has a superior coverage 

of the reference solution set. For this reason, it is necessary to use other measures that 

monitor the diversity of the non-dominated solution set. 

 

Figure  5-4 Schematic showing three non-dominated fronts to illustrate shortcoming 

of convergence metric 

5-3-2 Hypervolume Ratio (HVR) 

The hypervolume (HV) metric is defined as the volume (in objective space) 

enclosed by a reference point and the non-dominated solution set. The reference point 

can be defined using the worst objective function values. To illustrate this concept 

consider Figure  5-5 which shows a Pareto-optimal front, a non-dominated solution set 

(A, B and C) and a reference point denoted by W. The dashed lines define the 

hypervolume enclosed by non-dominated solutions. When the same reference point is 

used for multiple non-dominated fronts, the front with the larger HV is considered to 

be superior. In this study, the method developed by Fonseca et al. (2006) is used. This 

method is coded in an R package called “emoa” which can be downloaded from 

“http://www.statistik.tu-dortmund.de/~olafm/software/” (last visit 24/05/12).  

Reference solution set 

Non‐dominated set 1 

Non‐dominated set 2 

f1 

f2 
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Figure  5-5 Hypervolume defined by the non-dominated solutions A, B and C  

(Durillo et al., 2010) 

The hypervolume ratio (HVR) normalizes the HV to facilitate comparisons (Deb, 

2001). It is defined as the ratio of the HV for a non-dominated solution set Q and the 

HV of a reference solution set P* which is taken to be the approximate Pareto-optimal 

solution set: 

*

( )

( )

HV Q
HVR

HV P


 (5.8) 

5-3-3 Additive Epsilon Indicator (Iε+)  

The convergence and hypervolume metrics measure the proximity and diversity 

of a non-dominated solution set. However, these measures fail to identify a non-

dominated solution set which contains one or more solutions with poor proximity. To 

deal with this another measure called Iε+ is introduced. It is defined as the smallest 

distance one would need to translate every point in the non-dominated solution set, Q, 

so that it dominates a reference solution set, P* (Zitzler et al., 2002). Formally, if x1 is 

an element of Q, x2 is an element of P* and K is the number of objectives, the Iε+ 

metric is (Durillo and Nebro, 2011):  
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*
2 1 1 2( ) inf{ : }I Q x P x Q x x 

 
     


 (5.9) 

where, 1 2x x if and only if 1 21 : ( ) ( )i ii K f x f x      

Figure  5-6 illustrates the importance of this measure as a way dealing with the 

shortcoming of convergence and hypervolume metrics. Figure  5-6(a) shows a good 

approximation set, indicated by filled circles, and the reference set, indicated by the 

dashed line. In Figure  5-6(b) a new approximation set with a gap is illustrated. This 

new set is the same as the set in Figure 5-6(a) except the missing points are shaded 

light grey. The convergence measure fails to identify this gap because it averages the 

distance between the approximation set and reference set thereby reducing the impact 

of large gaps. The hypervolume measure also fails to identify the gap since the 

change in hypervolume due to a gap is small relative to the entire hypervolume - this 

is illustrated in Figure  5-6(c). However, the Iε+ measure readily identifies the gap 

because it will be 2-3 times worse for the set with missing points as shown in 

Figure  5-6(d) (Hadka and Reed 2011). The Iε+ measure can be interpreted as a 

measure of the quality or consistency of the coverage of the reference set. Therefore, 

the smaller the value of this metric, the smaller the gap in the solution set. 

 

Figure  5-6 Illustration of Iε+ as a measure of consistency (Hadka and Reed, 2011) 

It is stressed that the convergence, HVR and Iε+ metrics require knowledge of the 

reference solution set which in this chapter is referred to as the approximate Pareto-

optimal solutions set.  

5-4 Overview of Case Studies to Evaluate MOO Methods 

In this chapter two urban water resource case studies based on the Canberra and 

Sydney headworks supply systems, are used to assess the performance of different 
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MOO methods. Detailed descriptions of these case studies can be found in Chapters 3 

and 4. In addition, six benchmark problems and two water management case studies 

are used to test performance of MOACO variants. The purpose of this section is to 

summarize briefly the decisions and objectives used in these case studies.  

5-4-1 Canberra Headworks System 

The Canberra headworks system has four reservoirs supplying water to the city 

of Canberra. The layout of the system is presented in Figure  4-3. Details of the 

system can be found in Section  4-3-1. The main difference between the simulations 

conducted in this chapter and Chapter 4 is that there is no population growth and only 

one streamflow replicate is used based on the historical data for the period 1871 to 

2009 during which several major droughts were experienced.  

Thirteen decision variables are considered which categorized as either 

operational in that they control the running of the system or as infrastructure in that 

they define the physical characteristics of the system. The decisions are summarized 

in Table  5-1. Operational decisions include storage triggers for imposing restrictions, 

a pump mark for turning on the Murrumbidgee-Googong diversion, and parameters 

that determine the balance of storage between the Googong and Corin catchments. 

Infrastructural decisions involve major capital works to upgrade the capacity of 

Cotter Dam, a pumping station, the Stromlo water treatment plant and the 

construction of the Murrumbidgee diversion. In addition, the installation of rainwater 

tanks on individual allotments is supported to harvest roofwater and use it for non-

potable indoor and outdoor uses.  
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Table  5-1 List of decision variables used in Canberra case study 

Decision  Decision variable Lower 
limit 

Upper 
limit 

Category 

1 Murrumbidgee pump trigger 0 1 Operational 
2 Murrumbidgee diversion capacity 0 6000 Infrastructure 
3 Cotter pump capacity 3050 10000 Infrastructure 
4 Googong incremental gain 20 500 Operational 
5 Googong base gain 9000 11000 Operational 
6 First restriction trigger level 1 0 0.999 Operational 
7 Trigger intervals 0.05 0.25 Operational 
8 Stromlo water treatment plant capacity 7625 15000 Infrastructure 
9 Cotter incremental gain 20 500 Operational 

10 Cotter base gain 9000 11000 Operational 
11 Googong water treatment plant capacity 8235 15000 Infrastructure 
12 Cotter Reservoir capacity upgrade 0 100000 Infrastructure 
13 Number of houses used water tank 0 15000 Infrastructure 
Up to three objectives were used:  

1) Minimize the frequency of restrictions expressed as the percentage of months 

during which restrictions on water consumption are imposed. The restriction time 

fraction criterion is an important level-of-service measure. 

2) Minimize the expected present worth cost ($) defined as the sum of capital and 

discounted expected operating costs and the costs of unplanned shortfalls. The 

capital cost represents the cost of building new infrastructure such as dams or 

water treatment plant capacity upgrades. Table  5-2 summarizes the capital cost 

items. It is noted the costs are hypothetical and thus should not be taken literally. 

Two capital items involve a binary choice: if the item is selected by the 

optimization, then there is fixed setup cost along with a unit cost; if the item is not 

selected, there is zero capital cost. The operating cost includes the costs for 

pumping from Cotter Reservoir and the Murrumbidgee River to the Stromlo water 

treatment plant and pumping from the Murrumbidgee River to Googong 

Reservoir, and the transfer and treatment costs associated with Stromlo and 

Googong water treatment plants. A 5% discount rate was used. 

An unplanned shortfall arises when the system is unable to supply, demand that 

may be restricted; in most cases, an unplanned shortfall arises when reservoirs 

empty and there is insufficient streamflow. To steer the optimization away from 

solutions that result in unplanned shortfalls, a penalty of $1,000,000 per ML 

unplanned shortfalls is added to the present worth cost.  
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3) Minimize the fraction of time that total reservoir storage falls below 20%: 

This objective measures the vulnerability of the supply system to drought 

condition.  

Apart from the constraint on unplanned shortfalls, which was implemented using 

a penalty function approach, the only other constraints were the limits on the decision 

variables summarized in Table  5-1. 

 

Table  5-2 Capital decision variables for the Canberra water headworks system 

Decision Variable Unit Cost 
Cotter pump capacity upgrade $1000/ML 

Cotter Reservoir capacity upgrade $50x106+$1923/ML 
Stromlo and Googong WTP capacity upgrade $9180/ML 
Murrumbidgee to Googong pump diversion $20 x106+$42623/ML 

Water tanks $3000/ house 

5-4-2 Sydney Headworks System 

A full description of the Sydney headworks system can be found in       

Section  3-4-2. In this chapter, 150 years of stochastically generated streamflow data 

were used. 

A large number of options are available to ensure a secure water supply for the 

7-million population scenario. In this case study, eleven decision variables, listed in 

Table  5-3, were selected. Decisions 1 and 2 control the pump transfer of water from 

the Shoalhaven basin. Decisions 3 and 4 define the first stage of the drought 

contingency plan (DCP) to determine restriction levels. Decisions 5 and 6 define the 

second stage of the DCP. When the total storage fraction falls below the trigger given 

by decision 6, the already-constructed desalination plant with capacity given by 

decision 5 is activated. Decision 7 defines the capacity of Welcome Reef Reservoir. 

Decisions 8 and 9 define the priority for storing water in Warragamba. Depending on 

the values assigned to decisions 8 and 9, water may be preferentially stored in 

Warragamba or in the rest of the system. Decisions 10 and 11 define the maximum 

monthly Wollondilly transfer capacity during September to March and at other times 

respectively. The lower limit on these decisions corresponds to that recommended by 

Scott and Grant (1997). These two decisions are active in the three-objective scenario 

and fixed in the other scenarios. 
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Table  5-3 List of decision variables used in Sydney case study 

Decision 
variable 

Description Lower 
limit 

Upper 
limit 

Category 

1 Pump mark Warragamba 0.3 1 Operational 
2 Pump mark Avon 0.3 1 Operational 
3 Level 1 restriction trigger 0.05 0.95 Operational 
4 Trigger increment 0.05 0.25 Operational 
5 Desalination plant capacity (ML/day) 0 1,000 Infrastructure 
6 Desalination plant trigger 0.05 0.95 Operational 
7 Welcome Reef capacity (ML) 0 100,000 Infrastructure 
8 Warragamba base gain 8,000 12,000 Operational 
9 Warragamba incremental gain 10 200 Operational 

10 Maximum Wollondilly flow during 
September to March (ML/month) 

12,200 100,000 Operational 

11 Maximum Wollondilly flow at other times 
(ML/month) 

18,300 100,000 Operational 

 

Up to three objectives were considered: 

1) Minimize frequency of restrictions (%) defined as the percentage of months 

during which restrictions on water consumption are imposed. 

2) Minimize the present worth cost ($) defined as the sum of capital and 

discounted expected operating costs and the costs of unplanned shortfalls. The 

capital cost represents the cost of building new infrastructure, which in this case 

study, is the Welcome Reef dam and/or the desalination plant. Table  5-4 

summarizes the capital costs for Welcome Reef and the desalination plant. The 

capital cost model uses a binary function: if the asset is selected by the 

optimization, then the total cost is the sum of a fixed setup cost and a cost 

proportional to the size of the asset; however, if the asset is not selected, the 

capital cost is zero. The operating cost includes the costs for pumping transfers 

from the Shoalhaven and operation of the desalination plant. A 5% discount rate 

was used. 

The constraint on unplanned shortfalls is imposed using a penalty function 

approach. Here, a penalty of $100,000 per ML unplanned shortfall is added to the 

present worth cost. This penalty was selected to steer the optimization search 

away from solutions which allow reservoirs to “run dry” with consequent failure 

to supply minimum water needs. 
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3) Minimize environmental stress on the Wollondilly River: The following 

environmental stress metric was adopted to penalize the adoption of maximum 

regulated flow limits, defined by decisions 10 and 11, in excess of those 

recommended by Scott and Grant. 

12200
max 0, 5 if {Sept,..,March}

12200
( )

18300
max 0, if {April,..,August}

18300

m

m

q
m

Stress m
q

m

           
         

  (5.10) 

where mq is the actual regulated release in the Wollondilly in month m and 

( )Stress m is the penalty for exceeding the recommended flow limits in month m. 

The environmental stress criterion is the sum of the monthly stresses over the 

simulation. 

Apart from the constraint on unplanned shortfalls, which was implemented using 

a penalty function approach, the only other constraints were the limits on the decision 

variables summarized in Table  5-3. 

Table  5-4 Cost summary for infrastructure decision variables in Sydney case study 

Decision Variable Fixed and Unit Costs 
Desalination plant capacity (ML/day) $1,250,000,000 + $4,000,000 ML/day 

Welcome Reef capacity (ML) $100,000,000 + $1000/ML storage 

5-4-3 Benchmark Problems 

The performance of MOO algorithms is usually assessed using well-known 

benchmarks such as the Ziztler-Deb-Thiele (ZDT) test suite (Zitzler et al., 2000) and 

the DTLZ problems (Deb et al., 2002b). The eight-benchmark problems provide a 

sample of different types of Pareto fronts and different numbers of decision variables, 

thereby improving the chance of identifying efficient and robust MOO methods. 

Table  5-5 summarizes the benchmark problems that were used to evaluate the 

performance of different MOACO algorithms.  
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Table  5-5 Summary of benchmark problem characteristics 

Name 
Number of 
objectives 

Number of 
variables 

Type of Pareto Front 

ZDT1 2 30 Convex 
ZDT3 2 30 Convex, disconnected 
ZDT4 2 10 Convex, multimodal 
ZDT6 2 10 Concave, non-uniformly spaced 

DTLZ1 3 7 Linear, multimodal 
DTLZ2 3 12 Concave 
DTLZ3 3 12 Concave, multimodal 
DTLZ6 3 22 Degenerate 

5-5 Ant Colony Optimization  

In the preceding sections, three benchmark MOO methods, namely EMOEA, 

NSGA-II and SMPSO, were introduced. The focus of this section is the investigation 

of the potential of ant colony optimization (ACO) for applications involving urban 

water management. If the reader is mainly interested in the evaluation of MOO 

algorithm performance in the urban water resource context, then the reader may skip 

this section and proceed directly to Section  5-6. This section is organized as follows: 

First, the ACO method is briefly explained. Then existing multi-objective ant colony 

optimization (MOACO) algorithms are critically reviewed. Three MOACO methods, 

called MOACO-State, EMOACO and EMOACO-I, are then proposed to overcome 

the shortcomings identified in existing methods. These ACO methods are included in 

the evaluation of MOO algorithms in Section  5-6.  

5-5-1 Overview of Ant Colony Optimization  

Ant colony optimization is a recently developed heuristic optimization method. It 

was inspired by the fact that some species of ants are blind but nonetheless can find 

the minimum path between their nest and food. This is because of a chemical 

substances called pheromone that ants deposit when they travel on a route (Dorigo 

and Stützle, 2004). Based on the behaviour of real ants, Dorigo et al. (1991) and 

Dorigo et al. (1996) developed the first ant colony optimization method called Ant 

System (AS) to solve the travelling salesman problem (TSP) and job-shop scheduling 

problem (JSP).  

The first step in ACO is to represent the search space as a graph. In the literature, 

two approaches have been used to represent the search space. The nodal method was 

applied by Abbaspour et al. (2001) and Kumar and Reddy (2006) using a graph 
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similar to Figure  5-7 while the link method was used by Maier et al. (2003) using a 

graph similar to Figure  5-8. In both approaches, the first step is to split the range of 

each decision variable into a specific number of segments with a representative value 

assigned for each segment. In the nodal method, each variable value is represented by 

a node, and in the link method by a route. Ants travel between nodes corresponding to 

different variables to define a route as illustrated in Figures 5-7 and 5-8. In the nodal 

method, the route is denoted as (k, i, j) which means an ant travels from node i of 

variable k to node j of variable k+1, while in the second approach, the route is 

denoted as (k,i) which means an ant travels along route i from node k which 

corresponds to the ith segment of variable k. To handle constraints in ACO, a tabu list 

can be defined to prevent ants travelling on infeasible routes. 

One of the drawbacks of the nodal method is the potentially huge number of 

route combinations. To illustrate this, Figure  5-9 shows the possible routes for the 

nodal and link method when there are three segments. It shows there are nine possible 

routes for the nodal method and six possible routes for the link method. This 

difference rapidly grows as the number of variables and segments is increased. The 

large number of possible routes in the nodal method limits its ability to explore the 

search space. Mortazavi N. et al. (2009) compared these two methods and concluded 

the link method is the better choice. Accordingly, in this study, the link method is 

used.  

 

Figure  5-7 Schematic for nodal method showing ant routes between five discrete 

variables (Abbaspour et al., 2001) 
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Figure  5-8 Schematic for link method showing ant routes  

between two discrete variables 

 

Figure  5-9 Depiction of possible routes for nodal and link methods 

The next step is to define a transition rule that describes how ants select their 

route. The transition rule for the ith variable in the link model is (Dorigo and Stützle 

2004): 
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 (5.11) 

where Pij is the probability the ant at node i will travel on link j, ij  is the pheromone 

trail strength and ij  is heuristic information. The parameters   and   are 

introduced to control the relative importance of the pheromone and heuristic 

information respectively. 
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The pheromone trail strength encodes a long-term memory about the entire ant 

search process, and is updated by the ants themselves. In contrast, the heuristic 

information represents a priori information about the problem or run-time information 

provided by a source different from ants. Review of the literature shows there is no 

general rule for defining heuristic information. For instance, Dorigo et al. (1996) 

defined the inverse of distance between cities as heuristic information in the TSP 

while Maier et al. (2003) applied the inverse of cost of individual pipes.  

When all ants complete their tours, the pheromone information is updated in two 

ways according to the following equation:  

(1 )*ij ij      
 (5.12) 

First, pheromone is reduced in strength by evaporation where ρ is the fraction of 

pheromone that evaporates. Second, ants deposit an amount of pheromone on the 

paths they visited with the magnitude of ∆τ based on the quality of the solutions they 

found. 

Various ACO methods have been developed to improve AS performance. The 

first improvement, based on the concept of elitism, was introduced by Dorigo et al. 

(1991) and Dorigo et al. (1996). The main idea is to add significant additional 

pheromone onto the arcs belonging to the best tour found since the start of the search.  

The MAX-MIN AS introduced four modifications with respect to AS (Stützle 

and Hoos, 1996; Stützle and Hoos, 1997; Stützle and Hoos, 2000). The first 

modification strongly exploits the best tour found. Only either the iteration-best route 

(that is, the best route in the current iteration) or the best-so-far route is allowed to 

receive pheromone. The drawback of this strategy is that it can lead to stagnation 

where all ants follow the same, although suboptimal, tour. To overcome this 

shortcoming, the second modification limits the pheromone values on all routes to the 

interval min max[ , ]  . The third modification initialized the pheromone on all routes to 

τmax which in conjunction with a small evaporation rate increases the exploration at 

the start of the search process. Finally, pheromone values were reinitialized when the 

system reaches stagnation (Dorigo and Stützle, 2004).  
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Stützle and Hoos (1997) defined the maximum amount of pheromone for a TSP 

as follows 

max

1 1
.

optL



  (5.13) 

where ρ is evaporation rate and Lopt is the shortest route found in an iteration. The 

minimum amount of pheromone is defined by (Stützle and Hoos 1996): 
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where avg is the average number of different choices available to an ant at each step 

and n is number of segments. It is assumed that a run of MAX-MIN AS has 

converged if the best found route is constructed with a probability significantly higher 

than 0 – this probability is assigned a specific value pbest (Stützle and Hoos 2000). 

The Ant Colony System (ACS) (Dorigo and Gambardella, 1997) is another 

improved method based on AS which differs in three aspects, namely transition rule, 

global and local updating. ACS explores the search space more strongly due to its 

more aggressive transition rule. The transition rule in ACS is as follows: 
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where q is a random number uniformly distributed in [0,1], q0 is a parameter and J is 

a random variable selected according to Eq. (5.11) with α=1.  

In ACS pheromone is only updated on the best-so-far routes. The pheromone 

level is updated by applying the global updating rule using Eq. (5.12) where τij 

denotes route (i, j) that belongs to the best-so-far solution.
 
The local updating rule is 

applied to all routes in a tour. In this rule pheromone is evaporated on any route 

traversed by ants making that route slightly less desirable. The local rule is:  

0(1 )*     ij ij  (5.16) 

where τ0 is the initial amount of pheromone on routes and ζ is local evaporation rate.  
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All these improved AS methods have been successfully applied to a number of 

benchmark combinatorial optimization problems (Dorigo and Di Caro, 1999; Stützle 

et al., 2010). 

5-5-2 Review of Existing Multi-objective ACO Methods 

Several issues need to be addressed when adapting ACO to multi-objective 

optimization including the number of pheromone and heuristic matrices and the 

pheromone updating procedure. The fact that there is considerable choice has resulted 

in a wide range of published multi-objective ant colony optimization (MOACO) 

methods (Martı´nez et al., 2007; Angus and Woodward, 2009). In this section, the 

main features of existing methods are described and their potential drawbacks 

highlighted. 

Most MOACO approaches are extensions of well-known single objective ACO 

methods. For example, Baran and Schaerer (2003) and Doerner et al. (2003) adapted 

the Ant Colony System (ACS) while Bui et al. (2008) adapted the Ant System (AS). 

Although MOACO methods differ in detail, all share the following common steps: 

Step 1: Initialize parameters 

Step 2: Construct solutions 

Step 3: Find and archive non-dominated solutions  

Step 4: Update pheromone 

Step 5: Go to step 2 if the termination condition is not satisfied 

 

Generally MOACO methods can be categorized according to their number of 

pheromone and heuristic matrices (Martı´nez et al. 2007; Angus and Woodward 

2009). Iredi (2001) proposed an approach for bi-criterion optimization problems 

which uses cooperative ant colonies and multiple pheromone and heuristic matrices. 

Doerner and Gutjahr (2004) and Cardoso et al. (2003) developed the Pareto ant 

colony optimization (P-ACO) and multi-objective network optimization based on 

ACO (MONACO) respectively with a single heuristic matrix and several pheromone 

matrices. In contrast, crowding population-based ant colony optimization (CPACO) 

and multiple ant colony system (MACS) methods were applied with multiple 

heuristic matrices and a single pheromone matrix (Baran and Schaerer, 2003; Angus, 
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2007b). Indeed, in these methods, diversity is achieved across the Pareto front 

through the use of heuristic rather than pheromone information. McMullen (2001), 

Gravel et al. (2002) and T'Kindt et al. (2002) developed methods which used a single 

pheromone and a single heuristic matrix.  

In some of above methods, a single ant colony was used (Doerner and Gutjahr, 

2004; Alaya et al., 2007), while in the other methods, multiple colonies were used 

(Iredi, 2001; Baran and Schaerer, 2003; Doerner et al., 2003). The main reason for 

having multiple colonies is to treat objectives independently. Doerner et al. (2003) 

introduced COMPETants with multiple colonies. Each colony corresponds to an 

objective. One drawback of this approach is that by allowing ants to explore 

individual objectives independently, they are more likely to explore the extremes of 

the Pareto front and neglect the compromise trade-off points. For this reason Doerner 

et al. (2003) introduced the spies idea to facilitate sharing and exchanging 

information between colonies. In a similar way, Alaya et al. (2007) used multiple ant 

colonies with each colony dedicated to a single different objective using its own 

pheromone and heuristic information to build solutions. To avoid exploring extremes 

of Pareto front they introduced an extra colony that aims at optimizing all objectives. 

They compared four MOACO methods with different numbers of colonies and 

pheromone matrices and found the method using a single colony and multiple 

pheromone matrices performed best. Other researchers used multiple colonies for 

other purposes. Iredi (2001) used multiple colonies with the aim of forcing ants to 

find good solutions along the whole the Pareto front. The Iredi (2001) approach is 

different from Alaya et al. and Doerner et al. in that he used multiple pheromone 

matrices in each colony. This approach is conceptually similar to having a single ant 

colony with multiple start points but it is different because altered weights have been 

applied in each colony to weight the pheromone and heuristic information.  

Except in the case of multiple colonies where each colony has its own 

pheromone and heuristic information, it is necessary to integrate multiple pheromone 

or heuristic matrices in the transition rule. There are two methods for integration, 

namely weighted product (Iredi 2001; Baran and Schaerer 2003; Cardoso et al. 2003; 

Angus 2007b) and weighted sum (Doerner et al. 2003; Doerner and Gutjahr 2004).  
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In the weighted product method the transition rule is defined as: 

1 1

1 1
1
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 (5.17)

 

where L is the number of pheromone matrices, M is the number of heuristic 

information matrices and the wl and wm are pheromone and heuristic information 

weights respectively.  

In the weighted sum method the transition rule is defined as: 
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When applying either the weighted sum or weighted product approach the main 

challenge is to maintain diversity along the Pareto front. For that reason in the 

literature different approaches have been proposed to define weights. Iredi (2001) 

developed an approach that changed weights dynamically according to the following 

equation: 

1

1

k
w

m




   (5.19)
 

where w is the weight for ant k and m is the number of ants. 

Doerner and Gutjahr (2004) in P-ACO assigned a set of weights randomly at 

each iteration for each ant. Alaya et al. (2007) did not apply weights. However, since 

at each iteration a randomly selected objective was optimized, they implicitly applied 

binary weights (0 or 1). Angus (2007b) used the average-rank-rate method in which 

higher scoring objectives were assigned a greater weighting.  

The use of different approaches to set weights can result in different search 

behaviours (López-Ibáñez et al., 2004). The increase in required memory associated 

with multiple pheromone matrices can be of concern if the actual problem size is 

sufficiently large (Angus and Woodward 2009). Most of above mentioned approaches 
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were applied to bi-objective cases. Thus, there is little guidance on application of 

these approaches to problems with three or more objectives. 

One of the challenging aspects of MOACO is the definition of a heuristic 

information matrix. This is problem-specific and not necessarily easy to establish 

(Doerner et al., 2003; Coello Coello et al., 2007). Developing a proper heuristic 

information matrix is likely to be even more challenging in a multi-objective setting 

because of the need to define heuristic information for every objective. 

One of the most important steps of MOACO is the pheromone update. This 

involves two considerations that affect performance. The first is the selection of the 

routes to be updated and the second is the amount of pheromone to be deposited on 

the selected routes. 

Several approaches have been proposed in the literature for selecting routes. The 

selected routes may be based on the non-dominated solutions within an iteration 

(Iredi, 2001), the non-dominated solutions found so-far (Baran and Schaerer, 2003; 

Alaya et al., 2007; Afshar et al., 2009) or the best (and the second-best) solutions 

according to each objective (Doerner and Gutjahr, 2004). Bui et al. (2008) compared 

several pheromone updating methods including updating based on all solutions from 

the current iteration, non-dominated solutions in the current iteration, and non-

dominated solutions of all iterations. Their conclusion was that updating the non-

dominated solutions of all iterations outperformed other updating methods. This 

finding is consistent with the good performance of the elitism strategy in single 

objective optimization.  

However, a drawback of updating non-dominated solutions found in all iterations 

is that adding pheromone to these routes continuously may induce premature 

convergence and thus prevent the algorithm from generating an even coverage of the 

Pareto front (Angus and Woodward 2009). To abate loss of diversity, several 

methods have been suggested in the literature. Angus (2007b) used dominance 

ranking according to a non-dominated sorting technique to produce an even coverage 

of the Pareto front. Alaya et al. (2007) updated the pheromone value of a route only 

once despite how many solutions contain it. Bui et al. (2008) introduced an aging 

factor to deal with this issue. The main idea is to deposit more pheromone on routes 
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associated with more recent solutions in the archive of non-dominated solutions. 

They defined the age factor (AF) as: 

          1 

1

Current iterationnumber iterationnumber solutionadded toarch
A

ive
F

 


  

  (5.20) 

A variety of pheromone updating methods has been developed. In a single 

objective ACO minimization problem, pheromone is updated according to the inverse 

of objective function value - that is, depositing more pheromone on routes with the 

smaller objective function values encourages ants to follow those routes. Several 

researchers have tried to extend this idea to multi-objective problems. Baran and 

Schaerer (2003) used the inverse of the product of two objective function values for 

updating pheromone. A drawback of this method is that the amount of pheromone can 

be very sensitive to the objective value. This can cause premature convergence. Alaya 

et al. (2007) used the following equation to update pheromone. 

1
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i i
i i best

c
f S f S

 
 

  (5.21) 

where Δ  is the quantity of pheromone deposited on a route (c) at the ith iteration, 

 is the value of an objective function for the current iteration and  is 

the value of the best solution found so-far. Indeed, in Eq. (5.21) the value of Δ  is 

scaled between 0 and 1.  

To avoid the drawbacks associated with objective-dependent updating 

pheromone approaches, several researchers introduced updating methods independent 

of the objectives. Iredi (2001) suggested an updating rule where every ant is allowed 

to update the amount of pheromone equal to 1/L where L is the number of ants that 

are allowed to update in the current generation. Doerner et al. (2003) updated 

pheromone for only a number of the best ants ranked according to solution quality. 

They deposit pheromone based on the ant’s rank. In a similar way, Angus (2007b) 

updated pheromone based on the ant’s ranking. He used dominance ranking 

according to a non-dominated sorting approach such as that of the NSGA-II 

algorithm. López-Ibáñez et al. (2004) suggested all ants deposit a constant amount of 
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pheromone. Similarly, Doerner and Gutjahr (2004) used a constant amount of 10 and 

5 for the best and the second best ants respectively.  

5-5-3 Towards An Improved MOACO Algorithm 

There are several studies (Martı´nez et al., 2007; Angus and Woodward, 2009; 

López-Ibáñez and Stützle, 2010) which have sought to investigate all existing 

MOACO methods. However, these studies have mainly considered a particular 

combinatorial problem such as the travelling salesman problem (López-Ibáñez and 

Stützle 2010). As a result, it is difficult to these findings in urban water management 

applications.  

The review of existing MOACO methods in the preceding section showed that 

there are several important aspects that need to be addressed in MOACO algorithms. 

These include the number of heuristic and pheromone matrices, the transition rule, the 

pheromone updating procedure and the specification of heuristic information. To 

investigate the importance of each of these aspects, fifteen MOACO variants are 

constructed from the review of existing MOACO methods. These variants are 

compared against each other, using the benchmark problems and the Canberra case 

study with two and three objectives.  

In the interest of brevity, the details of these variants and the findings are 

presented in Appendix A. Here the focus will be on the best of these variants and on 

further enhancement. Out of the variants investigated, the variant called MOACO-

State appeared to best explore the search space regardless of number of objectives 

and objective scales. The main features of MOACO-State are as follows: 

1. Use a single colony with a single pheromone matrix regardless of the number of 

objectives. This avoids the complexity of colonies communicating in the search 

process and also avoids the need to assign weights.  

2. Do not use problem-specific heuristic information by setting β to zero in Eq. 

(5.11). This ensures MOACO-State is problem-independent. 

3. Apply a constant amount of pheromone (C) when updating routes corresponding 

to non-dominated solutions to maximize diversity in the Pareto front. This is 
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motivated by the fact that all the points on the Pareto front should be treated 

equally.  

4. Use the MAX-MIN AS method with max  defined by:  

max

C


  (5.22) 

5. Introduce a pheromone aging factor to reduce the chance of premature 

convergence. This is accomplished using the following pheromone update : 

C

AF
   (5.23) 

where AF is the number of iterations since the current non-dominated solution 

was added to the archive as described in Eq. (5.20). 

Figure  5-10 presents pseudo code for the MOACO-State algorithm. It provides a 

reference point for the next section which explores ways of enhancing this algorithm. 
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Assign parameters /*Number of decisions, Number of objectives, Number of segments (N), Number of ants, 

Initial pheromone (τ0), pheromone deposit (C), evaporation rate (ρ), α, β, avg, Pbest */ 

Calculate /*τmax, τmin */ 
For i= 1 to number of decisions do  

For j = 1 to number of segments do 
Create a route from decision i to decision i+1 (Ri,j) (Link method) 

End for 
End for 
Initialize pheromone trail /*put initial pheromone ( 0 ) on all routes*/ 

Initialize archive of non‐dominated solutions found so‐far (ND) = {φ} 

 

While stopping criteria is not met do  
/*a sufficient good fitness or a maximum number of iterations or no results improvements after  
a specific number of iterations*/ 

So
lu
ti
o
n
 

co
n
st
ru
ct
io
n
    For all ants do 

         For all decisions do 
Select the route based on probabilistic transition rule Eq. (5.11) 

       End for 
    Assign decision values to solutions based on the route traversed by the ant
End for 

Ev
al
u
at
io
n
 

  For all solutions do 
      Evaluate the objective function values corresponding to the solution 
      If (new solution dominates any in ND ) then 

Delete dominated solutions  
Add the new solution to ND 

                    Else if (none of ND dominate the new solution) then 
Add the new solution to ND 

                    End if 
End for 

U
p
d
at
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g 
p
h
e
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m
o
n
e
 

Evaporate pheromone of all routes  
  For all ND do 

      Calculate aging factor (Eq. (5.20)) 
      Calculate    (Eq. (5.23)) 
      Update pheromone trail for the solution 
End for 

  For all decisions do 
                     If (pheromone trail< τmin) then 

pheromone trail = τmin 

                     Else if (pheromone trail> τmax) then 
pheromone trail = τmax 

                     End if 
End for 

  End while 

O
u
tp
u
t 

Print set ND 

Figure  5-10 Pseudo code for MOACO-State algorithm 
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5-5-4 Towards a More Efficient MOACO Algorithm 

Comparison of MOACO-State against other MOO methods, reported in 

Section  5-6, revealed that MOACO-State was outperformed by the other methods. 

This prompted a careful assessment of the factors affecting the rate at which 

MOACO-State converged to the Pareto-optimal front. The ensuing insights led to the 

development of superior methods called EMOACO and EMOACO-I, which are 

described in this section. 

The way pheromone is updated in MOACO algorithms has a major effect on 

performance. In the absence of heuristic information, the pheromone update assumes 

an even more important role balancing exploration and exploitation. In MOACO-

State it was found that the amount of pheromone on all routes was decreased to a 

small value, except for the limited number of routes belonging to the current non-

dominated solution set. To illustrate this, the amount of pheromone on all segments 

for the first decision for a range of evaluation numbers is shown in Figure  5-11. This 

figure shows that only a limited number of segments, which belong to non-dominated 

solutions, have high pheromone. As a consequence, ants mostly explore routes 

belonging to the non-dominated solutions resulting in a very narrow exploration of 

the search space. While this behaviour impedes the convergence rate, it does offer an 

opportunity for improvement. 
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Figure  5-11 Amount of pheromone on segments for the first decision after 2000, 

4000, 6000, 80000 and 10000 evaluations (for Canberra case study with two 

objectives) 

To improve MOACO-State performance several ideas are adapted from 

evolutionary algorithms. It is worth stressing that the methods developed in this 

section are not hybrid GA-ACO methods since they do not use any GA or other 

evolutionary algorithm steps in any part of their algorithm.  

It is widely accepted that the mutation operator in evolutionary algorithms helps 

avoid the algorithm being trapped at local minima and fosters diversity (Srinivas and 

Deb, 1994; Deb et al., 2002a). To facilitate this feature in MOACO, the following 

route selection process is proposed. For ant k and decision i, the route rki is selected 

using:  

0

.(5.11)
i

ki

Randomly select oneof the N routes if q q
r

Select route applying Eq otherwise


 


     (5.24) 

where Ni is number of routes available for decision i, q0 is a parameter in the interval 

(0,1) and q is a random sample from a uniform distribution over the interval (0,1).  
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A key feature of genetic algorithms is the crossover operator which allows, for 

much of the time, exploration of the search space in the neighbourhood of the parent 

decisions. This motivated the introduction of the adjacency concept in pheromone 

updating as a way of mimicking the ability of the crossover operator to explore the 

search space. The adjacency concept is implemented by depositing pheromone on 

routes adjacent to the current non-dominated solution routes. For decision i, the 

proximity of route (i, j) to the nearest non-dominated route is given by its adjacency 

score k, defined as |j-j*| where (i, j*) is the closest non-dominated route to route (i, j). 

The pheromone deposit on route (i, j) then becomes  

max

( , ) 0
( )

( , ) 0
( )(1 )

0

adjij

c
if i j has an adjacency score k

AF

c
if i j has an adjacency score k k and u P

AF k

otherwise



 

      


  (5.25)

 

where u is a random uniformly distributed number over the interval (0,1), Padj is the 

adjacency probability which determines the probability of depositing pheromone on 

an adjacent route  and kmax is the maximum number of adjacent routes.   

It was found that the adjacency pheromone update improved convergence to the 

Pareto-optimal frontier as long as new solutions were being added to the set of non-

dominated solutions. However, the longer it took to find a new non-dominated 

solution, the greater was the likelihood of stagnation. To overcome this problem, the 

strategy of revisiting and mutating one of the current non-dominated solutions was 

introduced. The strategy commences when the number of iterations during which no 

new non-dominated solution is added, exceeds a predefined value, NoImprovement. 

One of the current non-dominated solutions is then selected randomly and one of its 

decisions is changed randomly. This procedure continues until a new non-dominated 

solution is found. The NoImprovement value is defined as the number of iterations 

required to reduce pheromone by evaporation from τ  to τ . It can be shown to 

be: 
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  (5.26) 

Adding these enhancements to the MOACO-State method results in a more 

efficient multi-objective ant colony optimization method hereinafter referred to as the 

EMOACO algorithm. To summarize these changes more formally Figure 5–12 

presents the pseudo code for EMOACO.  

EMOACO, like all other MOACO methods, randomly selects the initial routes 

traversed by each ant. The rate of convergence is affected by how close these initial 

routes are located to the Pareto-optimal routes. With this in mind, the following 

simple heuristic was adopted: EMOACO starts with the decision space being split 

into 8 rather than 256 segments – this reduces the number of decision combinations 

and thus improves the chance of EMOACO finding routes in the neighbourhood of 

Pareto-optimal solutions. Once a predetermined number of evaluations (500 in this 

study) is completed, the routes of the current non-dominated solutions are mapped, as 

initial routes, to the final search space where the number of segments for each 

decision is substantially increased (256 segments in this study). This enhancement to 

EMOACO is referred to as EMOACO-I. 
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Assign parameters /* adjacency probability(Padj), Number of decisions, Number of objectives, Number of 

segments (n), Number of ants, Initial pheromone (τ0), pheromone deposit (C), evaporation rate (ρ), Number of 
adjacency routes (Kmax), mutation rate (q0), avg, Pbest /* 
Calculate /* τmax, τmin, NoImprovement  */ 
For i= 1 to number of decisions do  

For j = 1 to number of segments do 
Create a route from decision i to decision i+1 (Ri,j) 

End for 
End for 
Initialize pheromone trail /*put initial pheromone ( 0 ) on all routes*/ 

Initialize archive of non‐dominated solutions found so‐far (ND) = {φ} 
Initialize Count = 0 /*count number of iterations without any changes in ND */ 

 

While stopping criteria is not met do  
/*a sufficient good fitness or a maximum number of iterations or no results improvements after a specific number of 
iterations*/ 

So
lu
ti
o
n
 c
o
n
st
ru
ct
io
n
 

  N = ‐1 /*flag changes in ND */ 
For all ants do 

    If (Count > NoImprovement) then /*revisiting solutions */ 
      Chose randomly one of the solutions in ND 
      Change randomly one of its routes 

Save the changed solution as a new solution 
    Else 
      For all decisions do 

Select a random number between 0 and 1 (r) 
      If (r < q0) then /* mutation */ 
        Select route randomly 
      Else 

Select route based on probabilistic transition 
rule Eq. (5.24) 

      End if 
    End for 

                                               Assign decision values to solutions based on the route 
traversed by the ant    End if 
  End for 

Ev
al
u
at
io
n
 

  For all solutions do 
                                Evaluate the objective function values corresponding to the solution 

If (new solution dominates any of ND ) then 
Delete dominated solutions  
Add the new solution to ND 
N=0 /*flag changes in ND */ 

Else if (none of ND dominate the new solution) then 
Add the new solution to ND 
N=0 /*flag changes in ND */ 

End if 
End for 
If (N <> 0) then /* No changes in ND */ 

    Count = Count + 1  
 

  Else 
    Count = 0 
  End if 
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Evaporate pheromone of all routes  
  For all ND do 

  Calculate aging factor (Eq.(5.20)) 
  Calculate    (Eq.(5.25)) 
  Update pheromone trail for the solution  

For all decisions do 
Select a random number between 0 and 1 (r) 

  If (r < Padj) then /* adjacency */ 
    Add pheromone to adjacency routes (Eq.(5.25)) 
  End if  
End for 

End for 
  For all decisions do 

If (pheromone trail< τmin) then 
pheromone trail = τmin 

Else if (pheromone trail> τmax) then 
pheromone trail = τmax 

End if 
End for 

  End while 

O
u
tp
u
t 

Print set ND 

Figure  5-12 Pseudo code for EMOACO algorithm 

5-6 Evaluation of MOO Algorithm Performance 

This section evaluates the performance of three benchmark MOO algorithms, 

NSGA-II, εMOEA and SMPSO, and three MOACO methods, MOACO-State, 

EMOACO and EMOACO-I. The primary objective is to identify the most efficient 

algorithm for urban water resources problems for a relatively small number of 

evaluations – this is motivated by the fact that function evaluations for urban water 

resource problems are computationally expensive. This section is organized as 

follows: First, the parameters of all six MOO methods are tuned. Then the 

performance of these methods is compared using the three metrics described in 

Section  5-3 for the Canberra and Sydney case studies.  

5-6-1 Tuning  

In this section the six MOO methods are tuned to obtain “good” parameters to 

ensure a fair comparison. To ensure consistency across methods, binary coding with 8 

bits (equivalent of 256 segments) and the same number of evaluations, i.e. 10000, 

were used. All methods were run 10 times with different initial random number seeds. 
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pbest in Eq. (5.14) was set to 0.05 (Stützle and Hoos, 2000). Polynomial mutation and 

uniform crossover operators were applied to SMPSO and NSGA-II respectively. One-

point crossover with bitwise mutation was used in εMOEA with an initial population 

of 100.  

The parameters of the six MOO methods are listed in Table  5-6. To ensure all six 

methods were compared in a fair manner, a structured search was used to optimize 

the performance metrics using a related problem, namely the two-objective Canberra 

system simulated between 1970 and 1990. For each method, a set of default 

parameters based on values recommended in the literature was adopted. Then a range 

of values for each parameter was generated by perturbing the default values. A 

combination of tuning parameters was formed by selecting a value for one parameter 

from the available range while keeping the other parameters at their default values. 

These combinations are described in Table  5-6 . The notation “Id” and “n” are used in 

this table to express the combinations. “Id” represents the name of a method, eg “E” 

denotes EMOACO method, and “n” shows the combination number. Finally, the 

performance metrics for up to 2000 evaluations were evaluated for different 

combinations of tuning parameters to identify the best set of tuning parameters for 

each method. The results of the HVR and convergence measures of all combinations 

for all methods are presented in Figure  5-13 to Figure  5-17. In the case where no 

combination of tuning parameters was superior over all evaluations, the combination 

which had the best HVR was selected on the grounds that HVR assesses both 

proximity and diversity while the convergence measure only assesses proximity. Both 

the HVR and convergence metrics require knowledge of the approximate Pareto-

optimal front. For the purposes of this study, the reference or “true” Pareto-optimal 

set was obtained from the Pareto-optimal set extracted from 60 runs, obtained from 

10 runs for each the six MOO methods with each run involving 10,000 evaluations. 

The reference set will be referred to as the “true Pareto front” or TPF. 

Table 5–6 summarizes the adopted parameters for each method. As only a 

limited number of combinations for each method were explored, there is a distinct 

possibility that the best set was not identified. Because EMOACO and EMOACO-I 

had 7 parameters for which only 20 combinations were tested, it is more likely that a 

better set of parameters was found for the non-EMOACO methods. Therefore, the 
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tuning procedure intrinsically favoured better outcomes for the non-EMOACO 

methods. It is acknowledged that the structured search is premised on the assumption 

that there is little interaction between parameters. As most of the tuned parameters 

were at the default literature values, this issue is considered to be of secondary 

importance. 

Table  5-6 Summary of parameters used in the six MOO methods 

Method Parameter Default 
Value 

Range of values used in 
tuning(presented number in 

Figures) 

Number of 
parameter 

combinations 
tested 

Tuned 
value 

EMOACO 
and 

EMOACO-I 

Number of 
ants 

1 1(E1); 2(E2); 5(E3); 10(E4) 20 1 

ρ 0.02 0.05(E5);0.1(E6);0.5(E7) 0.02 
C 10 5 (E8); 20(E9) 10 
τ0 20 10(E10); 30(E11); τmax(E12) 20 

Kmax 5 2(E13); 10(E14) 5 
Padj 0.05 0.01(E15); 0.1(E16) 0.05 
q0 0.005 0(E17); 0.01(E18); 0.05(E19); 

0.1(E20) 
0.1 

MOACO-
State 

Number of 
ants 

1 1(M1); 2(M2); 5(M3); 10(M4) 12 1 

ρ 0.05 0.02(M5); 0.1(M6); 0.5(M7) 0.02 
C 10 5(M8); 20(M9) 10 
τ0 20 10(M10); 30(M11); τmax(M12) 30 

SMPSO Swarm 
size 

100 100(S1); 50(S2); 200(S3) 8 100 

Archive 
size 

100 50(S4); 200(S5) 100 

PMutation 1/number 
of 

decisions 

0.005(S6); 0.05(S7); 0.1(S8) 0.005 

NSGA-II PCrossover 0.9 0.9(N1); 0.95(N2); 1(N3) 8 0.9 
PMutation 0.005 1/length of string (N4); 

0.015(N5); 0.05(N6) 
0.005 

Population 100 50(N7); 200(N8) 50 
εMOEA PCrossover 1.0 1.0(T1); 0.95(T2); 0.9(T3) 9 1.0 

PMutation 0.005 0.01(T4); 0.015(T5); 0.05(T6) 0.01 
PInversion 0.005 0.01(T7); 0.015(T8); 0.025(T9) 0.005 
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Figure  5-13 Results of EMOACO tuning as a function of number of evaluations for 

Canberra case study minimizing two objectives: present worth cost and restriction 

frequency (a) Convergence measure (b) HVR measure  
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Figure  5-14 Results of MOACO-State tuning as a function of number of evaluations 

for Canberra case study minimizing two objectives: present worth cost and restriction 

frequency (a) Convergence measure (b) HVR measure  
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Figure  5-15 Results of εMOEA tuning as a function of number of evaluations for 

Canberra case study minimizing two objectives: present worth cost and restriction 

frequency (a) Convergence measure (b) HVR measure  
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Figure  5-16 Results of NSGA-II tuning as a function of number of evaluations for 

Canberra case study minimizing two objectives: present worth cost and restriction 

frequency (a) Convergence measure (b) HVR measure  
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Figure  5-17 Results of SMPSO tuning as a function of number of evaluations for 

Canberra case study minimizing two objectives: present worth cost and restriction 

frequency (a) Convergence measure (b) HVR measure  
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5-6-2 Results and Discussion 

In this section, results of six MOO methods are evaluated. All methods applied 

with tuned parameters were obtained in the last section. The first employed case study 

is Canberra water supply system. To investigate the performance of these six MOO 

methods for a more complex system another case study namely Sydney water supply 

system also is employed. Moreover, since MOO methods are tuned to the Canberra 

case study, applying these methods in the Sydney case study will test capability of 

these methods more. Presented measures in this section are the average of obtained 

measures from 10 runs.  

5-6-2-1 Case Study – Canberra Water Supply System: Two objectives 

Figure  5-18 shows a plot of the convergence measure for the six MOO methods 

against a range of function evaluations for the Canberra system minimizing restriction 

frequency and present worth cost. EMOACO-I unequivocally outperforms the other 

methods demonstrating very rapid convergence. εMOEA is the best method among 

non-ACO methods. This graph clearly shows that the ranking of the methods varies 

as the number of function evaluations changes; for instance, NSGA-II outranks 

SMPSO and MOACO-State after 2000 evaluations. Figure  5-19 presents a similar 

plot for the HVR metric. Once again, EMOACO-I outperforms the other methods 

except when the number of evaluations is 5000. EMOACO and εMOEA are ranked 

as second best. Again this graph shows changes in rankings as the number of 

evaluations progress; for example, the rank of SMPSO is four after 5000 evaluations 

but climbs to two after 10000 evaluations. Figure  5-20 shows a plot of the Iε+ measure 

for the six MOO methods. This plot shows even more variation in the ranking 

highlighting the sensitivity of this measure. Except for 1000 evaluations, εMOEA is 

the best method. Interestingly, all non-ACO methods continue to improve as the 

number of evaluations increase.  
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Figure  5-18 Convergence measure for six MOO methods as a function of the number 

of evaluations for the Canberra case study minimizing two objectives: present worth 

cost and restriction frequency 

 

Figure  5-19 HVR measure for six MOO methods as a function of the number of 

evaluations for the Canberra case study minimizing two objectives: present worth 

cost and restriction frequency 
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Figure  5-20 Iε+ measure for six MOO methods as a function of the number of 

evaluations for the Canberra case study minimizing two objectives: present worth 

cost and restriction frequency 

To elaborate more on the difference between non-dominated solutions of each 

method and how the three measures reflect these differences, the results of the six 

methods are compared in Figure 5-21 for the first run after 1000 evaluations. This 

figure shows that EMOACO-I is the best method and MOACO-State is the worst in 

terms of all three measures. The non-dominated solutions obtained for the best and 

worse methods in terms of convergence measure are presented in Figure  5-22. This 

plot shows clearly that the EMOACO-I solutions are closer to the TPF. The 

convergence measures for EMOACO-I and MOACO-State are 0.087 and 0.358 

respectively. It is noted that although the difference between the two convergence 

measures is 0.271, the gap between the two non-dominated solution sets shown in 

Figure 5-22 is considerable.  

In Figure  5-23, the non-dominated solutions for the best and worse methods in 

terms of HVR measure, EMOACO-I and MOACO-State methods are plotted. In this 

figure the reference point is also shown. The area enclosed by green solid lines 

represents the hypervolume of MOACO-State and the area enclosed by blue dashed 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000 2000 3000 4000 5000 10000

Iε
+

Number of evaluations

EMOACO‐I

EMOACO

MOACO‐State

εMOEA

NSGA‐II

SMPSO



Chapter 5  162 

    

lines denotes the hypervolume of EMOACO-I. The figure clearly indicates that 

EMOACO-I has a larger hypervolume, which associates with better convergence and 

diversity.  

In Figure  5-24 two methods that have similar convergence measure value, 

EMOACO and εMOEA, are presented to demonstrate the difference between Iε+ 

measures for these methods. As discussed in Section  5-3, the Iε+ measure is sensitive 

to outlier solutions. In Figure  5-24 the solution for each method that has maximum 

distance from the TPF is marked by dashed circle. The Iε+ value for εMOEA is larger 

than for EMOACO because the outlined solution of this method is further from the 

TPF. 
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Figure  5-21 Three performance measures for the first run of the six MOO methods 

after 1000 evaluations for the Canberra case study minimizing two objectives: 

present worth cost and restriction frequency 

 

Figure  5-22 Non-dominated solutions of the best and worst methods in terms of 

convergence measure obtained at the first run of six MOO methods after 1000 

evaluations for the Canberra case study minimizing two objectives: present worth 

cost and restriction frequency 
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Figure  5-23 Non-dominated solutions of the best and worst methods in terms of HVR 

measure obtained at the first run of six MOO methods after 1000 evaluations for the 

Canberra case study minimizing two objectives: present worth cost and restriction 

frequency 

 

Figure  5-24 Non-dominated solutions of two methods with similar convergence 

measure value obtained at the first run of six MOO methods after 1000 evaluations 

for the Canberra case study minimizing two objectives: present worth cost and 

restriction frequency 
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Figure  5-20 indicated failure of ACO-based methods to improve their 

performance in terms of Iε+ after 2000 evaluations. To elaborate more on this issue, 

Figure  5-25 illustrates the ants’ exploration of the search space. In this figure the 

number of evaluations is plotted against the value of the first objective obtained in 

each evaluation. The pattern in Figure  5-25 shows ants explore the search space 

locally; that is, they only explore only part of Pareto frontier at any one time. The 

shortcoming of this is that the ants rarely explore part of the Pareto frontier that was 

found in the early stages of exploration. In this particular case study, the outlined 

point in Figure 5-24 was found in the early stages of exploration. This provides 

insight as to why the Iε+ measure of EMOACO and EMOACO-I fails to improve for 

evaluations beyond 2000.  

 

Figure  5-25 Pattern of EMOACO search space exploration for the first run 
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“true” set. However, the NSGA-II and SMPSO fronts appear to be dominated over 

much of the front by the other methods. To highlight the differences between the 

methods, the present worth cost at a restriction frequency of 0.1 for 1000 and 2000 

evaluations is presented in Table  5-7. There is considerable variation between the 

methods. For the 1000-evaluations case, the difference between the best and the worst 

cost is $73.4 million, which is about 17% of the lowest cost of $428.4 million. 
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Figure  5-26 Comparison of the “true” Pareto-optimal front (TPF) against the best 

Pareto sets (out of 10 runs) produced by the six MOO methods for the Canberra case 

study for (a) 1000 and (b) 2000 evaluations 
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To demonstrate the value of the initial phase in EMOACO-I, the EMOACO and 

EMOACO-I Pareto fronts are compared in Figure  5-27 for a range of evaluations for 

a randomly selected run. Recall that EMOACO uses 256 segments for each decision, 

while EMOACO-I uses 8 segments for the first 500 evaluations and thereafter 256 

segments. It can be seen that EMOACO required at least 1000 evaluations before its 

Pareto front was in the neighbourhood of the Pareto front produced by EMOACO-I 

after 500 evaluations. Although these results are for one run, they provide insight into 

the performance of EMOACO-I. For computationally expensive evaluations, this 

saving is particularly valuable. 

Table  5-7 Best (out of 10 runs) present worth cost ($ million) for a restriction 

frequency of 0.1 for the six methods 

Evaluations EMOACO-I EMOACO MOACO State εMOEA NSGA-II SMPSO 
1000 428.4 429.7 441.6 468.2 498.5 501.8 
2000 416.7 416.2 426.1 430.7 485.3 459.0 
 

 

Figure  5-27 Pareto fronts produced by EMOACO and EMOACO-I for a single run 

for different number of evaluations 
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The convergence, HVR and Iε+ metrics are based on the average obtained from 

10 runs with different random seed numbers. This ensures that comparisons are not 

significantly affected by sampling variability. However, it is insightful to compare the 

inter-run performance variability of the six MOO methods. Table  5-8 summarizes the 

standard deviation for the convergence, HVR and Iε+ measures over 10 runs after 

completing 1000, 2000 and 3000 evaluations. MOACO-State exhibits the highest 

variability for all metrics after 1000 and 2000 evaluations. The results confirm the 

overall superior performance of EMOACO-I. Its convergence, HVR and Iε+ standard 

deviations are the lowest for 1000 and 2000 evaluations. For 3000 evaluations, 

EMOACO-I is no longer superior in terms of convergence and HVR measures but 

remains competitive. These results suggest EMOACO-I is more robust than the other 

methods in the sense of its performance being less affected by choice of random 

number seed. 

Table  5-8 Convergence, HVR and Iε+standard deviations for 1000, 2000 and 3000 

evaluations (the best is shown as bold italics and the worst is underlined) 

 

   MOO methods 
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Convergence 
standard deviation 

1000 0.023 0.057 0.095 0.058 0.116 0.089 
2000 0.009 0.024 0.071 0.024 0.037 0.031 
3000 0.011 0.011 0.023 0.010 0.031 0.016 

HVR  
standard deviation 

1000 0.011 0.046 0.085 0.029 0.054 0.029 
2000 0.012 0.012 0.044 0.014 0.024 0.017 
3000 0.011 0.006 0.012 0.009 0.023 0.011 

Iε+ 
standard deviation 

1000 0.136 0.228 0.286 0.203 0.215 0.239 
2000 0.093 0.140 0.296 0.153 0.174 0.201 
3000 0.093 0.145 0.278 0.119 0.188 0.114 
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5-6-2-2 Case Study – Canberra Water Supply System: Three Objectives 

The convergence, HVR and Iε+ metrics for the six MOO methods optimizing the 

Canberra headworks system with three objectives are presented in              

Figure  5-28 to 5-30. EMOACO-I has the best convergence metrics and εMOEA has 

the best convergence among benchmark MOO methods. However, in contrast to 

Figure  5-18, Figure  5-28 shows a greater variability between methods – even after 

10,000 evaluations, there remain significant differences in the convergence measure. 

The addition of the third objective, to which the MOO parameters were not tuned, has 

made the optimization more challenging. With regard to the HVR metric, Figure  5-29 

shows that EMOACO-I is superior up to 3000 evaluations but is then marginally 

overtaken by all methods except MOACO-State. The poor HVR but satisfactory 

convergence performance of MOACO-State is suggestive of its inability to fully 

explore the decision space and the consequent loss of diversity. Indeed this confirms 

earlier experience with MOACO-State and the motivation for EMOACO and 

EMOACO-I. It is noted in Figure 5-30 εMOEA is clearly the best of all methods in 

terms of Iε+ with EMOACO-I unambiguously ranked second.  

 

Figure  5-28 Convergence measure for six MOO methods as a function of the number 

of evaluations for the Canberra case study minimizing three objectives: present worth 

cost, restriction frequency and time storage less than 20% 
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Figure  5-29 Measure for six MOO methods as a function of the number of 

evaluations for the Canberra case study minimizing three objectives: present worth 

cost, restriction frequency and time storage less than 20% 

 

Figure  5-30 Iε+ measure for six MOO methods as a function of the number of 

evaluations for the Canberra case study minimizing three objectives: present worth 

cost, restriction frequency and time storage less than 20% 
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5-6-2-3 Case Study – Sydney Water Supply System: Two and Three Objectives 

The MOO parameters, presented in Table  5-6, were tuned to the Canberra 

system. In the Sydney case study, the performance of the MOO methods is evaluated 

without any further tuning. All six MOO methods were run 10 times for 10,000 

evaluations with different initial random number seeds.  

Figure  5-31 through  5-33 present the convergence, HVR and Iε+ measures for the 

six MOO methods for the Sydney case study minimizing two objectives, present 

worth cost and restriction frequency. EMOACO-I has the best convergence measure 

except for 1000 evaluations. With the exception of 1000 evaluations, SMPSO is the 

best method among benchmark methods in terms of convergence. EMOACO-I 

outperforms other methods in terms of HVR measure. SMPSO is the best method 

among benchmark methods except for 1000 evaluations. Although Figure  5-33 

indicates good Iε+ performance of εMOEA for 1000 and 2000 evaluations, SMPSO 

overtakes εMOEA after 2000 evaluations. It also shows EMOACO-I is competitive 

with these methods with respect to Iε+.  
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Figure  5-31 Convergence measure for six MOO methods as a function of the number 

of evaluations for the Sydney case study minimizing two objectives: present worth 

cost and restriction frequency 

 

Figure  5-32 HVR measure for six MOO methods as a function of the number of 

evaluations for the Sydney case study minimizing two objectives: present worth cost 

and restriction frequency 
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Figure  5-33 Iε+ measure for six MOO methods as a function of the number of 

evaluations for the Sydney case study minimizing two objectives: present worth cost 

and restriction frequency 

 

Figure  5-34 Convergence measure for six MOO methods as a function of the number 

of evaluations for the Sydney case study minimizing three objectives: present worth 

cost, restriction frequency and environmental stress 
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Figure  5-35 HVR measure for six MOO methods as a function of the number of 

evaluations for the Sydney case study minimizing three objectives: present worth cost, 

restriction frequency and environmental stress 

The Sydney three-objective case study reveals a significantly greater divergence 
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evaluations. The dramatic decrease of MOACO-State Iε+ value after 4000 evaluations, 

not observed in the other metrics, highlights sensitivity of the Iε+ measure to outlier 

solutions. As shown in the enlargement, εMOEA is the overall best method in terms 

of Iε+ with EMOACO-I ranked overall as second at 2000 or more evaluations.  
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Figure  5-36 Iε+ measure for six MOO methods as a function of the number of evaluations for the Sydney case study minimizing three 

objectives: present worth cost, restriction frequency and environmental stress 
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Comparison of all six MOO methods in terms of the three measures for the four 

case study combinations reveals that no one method unambiguously outperforms the 

other methods. For instance, while EMOACO-I performed well in terms of 

convergence and HVR measure for the two-objective Canberra case it did not 

perform as well in terms of Iε+. Similarly, εMOEA is the best method among 

benchmark methods for three cases while SMPSO has better convergence 

performance for the two-objective Sydney case.  

The results clearly demonstrate the improvement of EMOACO and EMOACO-I 

over MOACO-State. Indeed MOACO-State is among the worse methods in almost all 

cases. It is also noted that NSGA-II was ranked last among the benchmark methods in 

most of the cases and was particularly poor in the three-objective cases with respect 

to the convergence measure. 

5-7 Conclusions 

The optimization of water resource systems in the presence of conflicting 

objectives necessitates the use of multi-objective optimization methods. Modern day 

MOO methods based on probabilistic methods require many thousands of objective 

function evaluations. Unfortunately, these evaluations typically require running 

simulation models, which for complex water resource systems, can be 

computationally very expensive. Therefore there is a strong practical need for MOO 

methods that converge quickly while maintaining diversity along the Pareto front. 

Recently, a number of studies, mainly using evolutionary algorithms and particle 

swarm optimization methods, have focussed on MOO methods that converge more 

quickly. There is a strong practical motivation to identify which of these methods is 

best suited to urban water management applications.  

This chapter approached the task of identifying the best-suited MOO methods for 

urban water resource applications in three steps: 

1) A review of the literature was conducted to shortlist a number of existing MOO 

methods for detailed evaluation. The criteria for selecting the methods were 

evidence of good performance, uptake and availability of codes. The review 

identified three benchmark MOO methods, NSGA-II, εMOEA and SMPSO. 
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2) The good performance of ACO in finding optimal solutions in single objective 

problems motivated investigation of its potential in multi-objective optimization. 

As most multi-objective implementations of ACO have focussed on combinatorial 

problems, the approach taken was to adapt existing ACO methods to develop a 

MOACO algorithm suitable for urban water resource applications.  

A review of the MOACO literature identified a number of shortcomings, the main 

one being their problem-specific implementation. Based on this review, an 

algorithm called MOACO-State method was developed incorporating the best 

features of existing ACO methods whilst avoiding their shortcomings. Important 

features of MOACO-State include the use of a single ant colony with one 

pheromone matrix, a pheromone updating process independent of the number of 

objectives and the scale of objective function values, and the elimination of 

heuristic problem-specific information. However, it was found that MOACO-

State did not perform better than existing benchmark methods and was prone to 

stagnation or premature convergence. 

To improve MOACO-State’s performance, two concepts borrowed from 

evolutionary search methods, namely adjacency and random selection, were 

implemented in the ACO framework. Adjacency exploits the proposition that 

potentially good solutions lie in the neighbourhood of current non-dominated 

solutions. Random selection allows ants to visit routes with low pheromone. The 

inclusion of these features in MOACO-State led to a new method called 

EMOACO. Furthermore, the use of a simple heuristic to reduce the number of 

decision combinations in the initial phase of EMOACO was added to accelerate 

initial convergence. This method was called EMOACO-I. 

3) To identify the best existing MOO methods for urban water resource applications 

and to assess the performance of newly developed MOACO methods, a 

performance comparison was conducted using two case studies based on the 

urban headworks systems serving the Australian cities of Canberra and Sydney. 

Each case study considered a two- and three-objective optimization problem with 

about a dozen decision variables affecting infrastructure investment and system 

operation. Three performance metrics were used to evaluate performance: i) the 

convergence metric to assess proximity; ii) the hypervolume ration (HVR) metric 
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to assess proximity and diversity; and iii) the Iε+ measure to assess consistency. 

The comparison was conducted for function evaluations in the range 1,000 to 

10,000.  

For the non-MOACO methods, εMOEA and SMPSO had comparable 

performance with NSGA-II ranked behind them. It was found that in most cases 

EMOACO-I was the best performing method in terms of convergence and HVR 

with EMOACO ranked second. With respect to the Iε+ metric EMOACO-I was the 

best in one case and competitive in the other cases. It was observed that the Iε+ 

metric was the most sensitive of the metrics, primarily because it focuses on 

outliers on the non-dominated solution set.  

Overall none of six MOO methods was superior in terms of all measures and for 

all case study problems. However, it was clear that MOACO-State was the worst 

performing method, a finding which vindicated the enhancements leading to the 

EMOACO-I algorithm. Of particular interest was the greater variability in the 

performance of the MOO methods when moving from two to three objective 

problems and from the Canberra case study, for which MOO parameters were 

tuned, to the more complex Sydney case study, for which the MOO parameters 

were not tuned.  
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A-1 Introduction 

This appendix evaluates the performance of sixteen MOACO algorithms          

(or variants) which are based on what appear to be the best features identified in the 

review of existing MOACO methods. These variants enable systematic investigation 

of the benefits and shortcomings of using single or multiple pheromone matrices in 

transition rules and of using the different approaches in updating pheromone.  

Table  A-1 summarizes the fifteen MOACO variants (M1 to M15) plus the best 

performing variant called MOACO-State. These variants are used to systematically 

trial the algorithms that control the transition rule and pheromone updating. Three 

methods for integrating multiple pheromone matrices into the pheromone transition 

rule are considered: 1) weighted sum 2) weighted product and 3) random. Pheromone 

updating involves two steps, determining the amount of pheromone to be deposited 

and selection of the routes to be updated. Two methods are considered that determine 

the amount of pheromone to be deposited: 1) scaled objective function value; and 2) 

inverse of objective function values. Three methods are considered that determine 

which routes are to be updated with pheromone: 1) select the non-dominated 

solutions in the current iteration; 2) select the non-dominated solutions found in all 

iterations; and 3) select the best routes according to each objective.  

The transition rules based on weighted sum and weighted product are given by 

Eqs. (5.17) and (5.18). However, since no heuristic information is used, these two 

equations can be simplified as follows:  
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A number of MOACO parameters were common to all the variants. The initial 

pheromone (τ0) should bet set at a moderate value. If τ0 is too large it will take a long 

time before ants explore good solutions, and if it is too small, search performance is 

sensitive to early search outcomes (Dorigo and Stützle, 2004). Based on literature 

values, τ0 is set to 20. ρ and α are set to 0.02 and 1, respectively, which are the values 

recommended by (Dorigo and Stützle, 2004). Pbest is set to 0.05 (Stützle and Hoos, 

1996). The number of decision segments and number of ants were set to 256 and 10 

respectively. The pheromone deposition constant C used in Eq. (5-23) was set to 10. 

Table  A-1 Summary of MOACO variants 

Variant Transition rule 
Routes on which pheromone 

is deposited 

Amount of 
pheromone 
deposited 

M1 Random 
Non-dominated solutions 

found so far 
Scaled objectives 

M2 Random 
Non-dominated solutions 

within an iteration 
Scaled objectives 

M3 Random Best of objectives Scaled objectives 

M4 Weighted product 
Non-dominated solutions 

found so far 
Scaled objectives 

M5 Weighted product 
Non-dominated solutions 

within an iteration 
Scaled objectives 

M6 Weighted product Best of objectives Scaled objectives 

M7 Weighted sum 
Non-dominated solutions 

found so far 
Scaled objectives 

M8 Weighted sum 
Non-dominated solutions 

within an iteration 
Scaled objectives 

M9 Weighted sum Best of objectives Scaled objectives 

M10 Random Best of objectives 
Inverse of 
objectives 

M11 Weighted product Best of objectives 
Inverse of 
objectives 

M12 Weighted sum Best of objectives 
Inverse of 
objectives 

M13 Random 
Non-dominated solutions 

found so far 
Inverse of 
objectives 

M14 Weighted product 
Non-dominated solutions 

found so far 
Inverse of 
objectives 

M15 Weighted sum 
Non-dominated solutions 

found so far 
Inverse of 
objectives 

MOACO-
State 

Single Pheromone using Eq. (5.11) 
Non-dominated solutions 

found so far 

Constant with 
aging factor (Eq. 

(5.23)) 
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A-2 Results 

In this section the performance of the fifteen variants M1 to M15 is summarized 

for the six benchmark problems and for the Canberra case study with two and three 

objectives. For each variant, 25,000 and 10,000 evaluations were performed on the 

benchmark problems and Canberra case studies respectively. The primary goal of any 

MOO method is to produce a diverse non-dominated solution set close to the true 

Pareto front. Given that perspective and given the considerable number of variants to 

be compared, it was decided in the interest of clarity to adopt a single performance 

metric. HVR was chosen because, of the three metrics considered in this study, it is 

the only one that evaluates both proximity and diversity. The goal of this approach is 

to screen out the poorly performing variants and to identify the most promising one 

for inclusion in the more rigorous assessment in Section 5-6. 

As already noted, the variants are constructed to enable investigation of three key 

aspects of MOACO methods. These deal with the selection of routes on which 

pheromone is to be deposited, the amount of pheromone deposited on routes and the 

number of pheromone matrices. In what follows, the variants M1 to M12 are first 

compared to assess the impact on performance of route selection and the amount of 

deposited. Then M1, M4 and M7 are compared against M13, M14 and M15 to 

investigate further the role of the amount of pheromone deposited on routes. Finally 

to assess the value of using single and multiple pheromone matrices, the M1, M4 and 

M7 variants are compared with MOACO-State. 

In Figures A–1 to A–10 the hypervolume measure for M1 to M12 is presented as 

a function of the number of evaluations for the eight benchmark problems and the 

two- and three-objective Canberra case studies. In all cases, M1, M4 and M7 are 

found to be the best of the 12 variants. The feature common to these three variants is 

that pheromone is updated on the non-dominated solutions found so-far. This finding 

is in agreement with Bui et al. (2008). Indeed, although M1, M4 and M7 have 

different transition rules, there is little difference in their hypervolume measures. This 

suggests that the pheromone updating algorithm may be more important than the 

transition rule.  
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In some problems, the M2, M5 and M8 variants were ranked consistently as 

second best. Common to these variants is that pheromone is updated on the non-

dominated solutions within an iteration. One of the drawbacks of this approach is that 

non-dominated solutions within an iteration can be potentially far from the non-

dominated solutions found so-far. Moreover, the non-dominated solutions found in an 

iteration can vary considerable between iterations. This may result in a more diffuse, 

less structured exploration of the search space.  

All of the variants that used the best-of-objective option to update pheromone 

performed very poorly in the Canberra and ZDT4, ZDT6 and DTLZ6 problems. For 

instance, for ZDT4, these variants reached stagnation after 5,000 evaluations, while 

for the two- and three-objective Canberra problem, they stagnated after 2,000 

evaluations. The main drawback of this updating approach is that because only the 

routes associated with the best-of-objective routes are updated at each iteration, only 

a limited number of routes is updated. For instance, in the case of two objectives only 

two routes are updated. It is likely that the best-of-objective values and their 

associated routes do not change over a number of iterations. This can quickly lead to 

stagnation. In cases where the best-of-objective values vary among iterations this 

approach performs better as in the case of ZDT1. When there are more than two 

objectives it is likely there will be more than one route identified as having the best-

of-objective result for a particular objective. In such cases it is necessary to decide 

which routes should be updated. This issue has not been addressed in the literature. In 

this study, only one of the routes was randomly selected and updated. 
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Figure  A-1 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem ZDT1 

 

Figure  A-2 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem ZDT3 
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Figure  A-3 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem ZDT4 

 

Figure  A-4 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem ZDT6 
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Figure  A-5 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem DTLZ1 

 

Figure  A-6 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem DTLZ2 
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Figure  A-7 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem DTLZ3 

 

Figure  A-8 HVR measure for twelve variants as a function of the number of 

evaluations for the benchmark problem DTLZ6 
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Figure  A-9 HVR measure for twelve variants as a function of the number of 

evaluations for the Canberra case study minimizing two objectives: present worth 

cost and restriction frequency 

 

Figure  A-10 HVR measure for twelve variants as a function of the number of 

evaluations for the Canberra case study minimizing three objectives: present worth 

cost, restriction frequency and the fraction of time that storage is less than 20% 
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In Figures A-11 to A-20 the hypervolume measure versus the number of 

evaluations for M1, M4, M7, M13, M14 and M15 variants is presented for each of the 

ten problems. These variants differ in terms of the amount of pheromone to be put on 

the non-dominated so-far solutions. The M1, M4 and M7 variants update pheromone 

based on the value calculated using Eq. (5.21) while M13, M14 and M15 update 

pheromone based on the inverse of objective function values. It was observed that the 

difference between the maximum and minimum amount of pheromone given by Eq. 

(5-21) was small – the pheromone deposit was effectively constant. 

The results for the benchmark problems show little difference among the six 

variants. This is because the scale of the objective function values is not very large, so 

the scale of the inverse of the objective function values is small. However, in the 

Canberra problems, there are large differences in the scale of the objective function 

values. As a result, greater differences in the performance of the variants are 

observed. Figure  A-19 shows that all three variants using the inverse objective 

method, M13, M14 and M15, are worse than M1, M4 and M7. This difference is 

starkly greater for the three-objective Canberra problem shown in Figure A–20.  
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Figure  A-11 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem ZDT1 

 

Figure  A-12 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem ZDT3 
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Figure  A-13 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem ZDT4 

 

Figure  A-14 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem ZDT6 
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Figure  A-15 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem DTLZ1 

 

Figure  A-16 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem DTLZ2 
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Figure  A-17 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem DTLZ3 

 

Figure  A-18 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the benchmark problem DTLZ6 
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Figure  A-19 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the Canberra case study minimizing two 

objectives: present worth cost and restriction frequency 

 

Figure  A-20 HVR measure for six variants (M1, M4, M7, M13, M14 and M15) as a 

function of the number of evaluations for the Canberra case study minimizing three 

objectives: present worth cost, restriction frequency and and the fraction of time that 

storage is less than 20% 
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The results presented so far consistently show that the M1, M4 and M7 variants 

outperform the other variants. However, these variants depend on the objective 

function values in either the pheromone updating system or in the transition rule. To 

assess the significance of being dependent on objective function values, the sixteen 

variant, MOACO-State, is proposed with a single pheromone matrix and constant 

value for updating pheromone on non-dominated solutions found so-far. In 

Figures  A-21 to  A-30 the hypervolume measure of these three variants is compared 

against MOACO-State for the ten problems.  

For the benchmark problems, the performance of M1, M4 and M7 is similar to 

that of MOACO-State, although MOACO-State would be judged to be superior. This 

finding is in agreement with (Martínez et al. 2007) who concluded that the updating 

process is more important than the number of pheromone or heuristic matrices. For 

the Canberra problems, MOACO-State has once again similar performance similar to 

the other variants, though in the three-objective problem, M4 and M7 perform 

noticeably worse for 3000 or fewer evaluations. MOACO-State is judged superior to 

M1, M4 and M7 for two reasons: 

1) Because MOACO-State applies constant pheromone C regardless of the number 

and scale of objectives, it is considered to be more robust. 

2) Because the primary interest in this chapter is identifying MOO methods that 

perform well for a limited number of evaluations, MOACO-State is judged to 

have a slight edge over the other variants, particularly for the three-objective 

Canberra problem. 

For these reasons, MOACO-State is taken as representing the best fusion of 

existing MOACO algorithm features. 
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Figure  A-21 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem ZDT1 

 

Figure  A-22 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem ZDT3 
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Figure  A-23 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem ZDT4 

 

Figure  A-24 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem ZDT6 
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Figure  A-25 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem DTLZ1 

 

Figure  A-26 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem DTLZ2 
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Figure  A-27 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem DTLZ3 

 

Figure  A-28 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the benchmark problem DTLZ6 
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Figure  A-29 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the Canberra case study minimizing two 

objectives: present worth cost and restriction frequency 

 

Figure  A-30 HVR measure for three variants (M1, M4 and M7) and MOACO-State as 

a function of the number of evaluations for the Canberra case study minimizing three 

objectives: present worth cost, restriction frequency and the fraction of time that 

storage is less than 20%
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6-1 Introduction 

The overall aim of this thesis was to produce multi-objective optimization 

methods of greater practical relevance to urban water resource management. In 

pursuit of this aim, three specific objectives were set: 

1. Identify and address the shortcomings of existing multi-objective optimization 

methods in urban water resources planning and operation; 

2. Investigate the application of multi-objective optimization to scheduling and 

scaling of options to efficiently and equitably manage the challenge of population 

growth; and 

3. Investigate the efficiency of multi-objective optimization search methods in the 

urban water resources applications. 

This chapter reflects on the contributions made in this thesis. It summarizes the 

main findings with regard to each objective and then explores future research 

directions.  

6-2 Summary and Conclusions 

In this section, the rationale for each of the three objectives is revisited followed 

by a discussion of the major findings and their significance. 

 Moving Towards More Practical Multi-objective optimization 6-2-1

Methods For Urban Water Resource Systems 

Urban water management requires making decisions in the presence of 

conflicting objectives. The management of drought security in urban water supply is 

typically tackled using a mix of short-term options that manage the immediate 

response to drought and long-term options that control the risk of triggering the 

drought contingency plan. However, the maximization of drought security conflicts 

with other important objectives such minimizing economic cost and environmental 

impacts. This, along with the potentially very large number of solutions available to a 

water agency, makes multi-objective optimization a potentially very useful decision-

support tool.  
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Review of past studies on the use of multi-objective optimization in water 

resource applications identified several shortcomings in a number of practically 

important areas. These include the following: 1) focusing exclusively on either long-

term (or infrastructure) options or on short-term options (such as operation rules or 

drought contingency plans) may lead to sub-optimal solutions; 2) the use of short 

hydro-climate forcing data time series in simulation models to evaluate drought 

security can produce solutions that make the system highly vulnerable to severe 

drought; and 3) the a priori setting of environmental constraints may hide trade-offs 

between environmental, economic and security factors that are of considerable 

interest to decision makers. 

These shortcomings have been addressed by a new multi-objective methodology. 

It exploits the ability of evolutionary algorithms to handle complex nonlinear 

objective functions and to interface with complex simulation models. An important 

contribution is the explicit treatment of drought security. The constraint is imposed 

that no unplanned shortfalls in demand may occur during the simulation – an 

unplanned shortfall would occur when the storages “run dry” or when there are 

limitations on transfer capacity, resulting in a failure to meet the minimum water 

needs specified in the drought contingency plan. Therefore, for an N-year simulation, 

the optimization produces a solution capable of dealing with a drought with an 

expected return period of N years. By using stochastically generated hydro-climate 

inputs, it is possible to consider very high levels of drought security.  

A case study based on the headworks system for Australia’s largest city, Sydney, 

demonstrated the practical significance of these shortcomings and, importantly, the 

ability of the new approach to deal with these shortcomings in a practicable manner. 

The following conclusions can be drawn from this case study: 

1) Optimizing either operating rules or infrastructure options runs the risk of 

producing significantly inferior solutions. In the Sydney case study, there was 

strong interaction between some of the operating rule and infrastructure decisions. 

This highlights the importance of embedding an adequate simulation model in the 

optimization framework to ensure that joint optimization of operating rules and 

infrastructure options is possible.  



Chapter 6  205 

     

2) The Sydney case study demonstrated the very considerable sensitivity of Pareto-

optimal solutions to the expected return period of the severest drought. Indeed 

where high levels of drought security are expected, the use of historic or short 

stochastic hydro-climate records is fundamentally flawed leading to so-called 

“optimal” solutions that render the “optimized” system highly vulnerable to 

severe drought. 

3) Environmental flow constraints are typically imposed on allocations within urban 

the water resource systems. The a priori imposition of such constraints runs the 

risk of missing potentially good solutions. It was shown in the Sydney case study 

that system performance was sensitive to the level of environmental flow 

constraints. Translating such constraints into objectives, difficult as it may be, 

provides a rich set of trade-offs between economic, social and environmental 

factors. 

 Efficient and Equitable Scheduling of Options to Cater For Future 6-2-2

Changes 

In the face of urban population growth and the accompanying growth in water 

demand, the performance of the urban water resource system is expected to 

deteriorate over time. This will result in the need to intervene and adapt the system to 

the changing conditions.  

The scheduling capacity expansion problem seeks to identify the optimal 

schedule for changes to operating rules and infrastructure. In past studies, this 

problem has been largely tackled by minimizing the total present worth of capital, 

operational and rationing costs. A significant drawback of minimizing the total 

present worth cost is that it is likely to produce solutions that lead to more severe and 

frequent rationing in the future. Such a solution is likely to be socially unacceptable. 

A new multi-objective formulation for the scheduling capacity expansion 

problem is developed to overcome this shortcoming while addressing the need to 

explicitly deal with drought security and jointly optimize operating and infrastructure 

decisions. The formulation enables the trade-off between cost and equity (the equal 

sharing of the burden of restrictions over the planning horizon) to be explored and 

deals with drought security by performing simulation using multiple replicates of 
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future climate. A case study based on the headworks system for Australia’s capital 

city, Canberra, was conducted to evaluate the merits of the new approach. The 

following conclusions can be drawn from this case study: 

1) It was shown that minimizing total present worth cost can lead to more severe and 

frequent restrictions in the latter stages of the planning horizon. This unequal 

sharing of the burden of water shortages would be seen as a politically and 

socially-sensitive equity issue. A sensitivity analysis of the discount rate revealed 

that the higher the discount rate the greater the inequity across planning stages.  

2) The importance of jointly scheduling both operating rule and infrastructure 

decisions was clearly demonstrated. By allowing decisions to adapt to the initial 

state of the system and to the growth in demand, the total present worth cost was 

reduced from $462 m (when all decisions were made at the start of the planning 

horizon) to $444 m (when decisions could be made at any of the three change 

points within the planning horizon). Indeed, in the Canberra case study, it was 

found that virtually all the benefit of scheduling decisions over the planning 

horizon could be attributed to the scheduling of operating rule decisions. 

3) It was shown that formulating the scheduling capacity expansion problem as a 

multi-objective problem enabled the trade-off between cost and equity to be 

explored. The core idea was to introduce an objective which seeks to minimize 

the difference in the cost of restrictions between the planning stages. This 

produced a much richer, more relevant set of solutions for a decision maker to 

consider. 

 Computationally Efficient Multi-objective Optimization Methods 6-2-3

Computationally expensive simulation models are typically used in urban water 

resource applications to evaluate system performance. Simulation run times can range 

from less than a minute to over thirty minutes. These long run times are considered an 

impediment to the practical usage of MOO methods in urban water management. 

The final objective of this thesis was to identify MOO methods that can produce 

approximate Pareto-optimal solutions with a limited number of objective function 
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evaluations. Three benchmark MOO methods, NSGA-II, εMOEA and SMPSO, were 

selected among existing MOO methods for comparison.  

The good performance of ant colony optimization (ACO) in single objective 

problems motivated investigation of its suitability for multi-objective optimization in 

the context of urban water management. A review of past work identified a number of 

shortcomings in existing MOACO methods with the principal one being the problem-

specific nature of the algorithms. In this thesis, three MOACO methods were 

developed to address these shortcomings and were compared against the three 

benchmark methods using four urban water resource test problems. 

The comparison of the six MOO methods using three metric that assessed the 

convergence, diversity (hypervolume ratio) and consistency (Iε+) of solutions revealed 

that none of the methods was superior but that two of the methods, NSGA-II and 

MOACO-State, were inferior to the other methods. The EMOACO-I algorithm was 

found to be the best method in terms of the convergence and hypervolume ratio 

metrics but other methods produced better Iε+ metrics. Out of the three benchmark 

methods, none emerged superior – εMOEA was ranked first for three of the four 

urban water resource test problems and SMPSO was ranked first for the fourth 

problem.  

6-3 Future Research Directions 

While this thesis has made a number of significant contributions that make multi-

objective optimization more relevant and practicable in urban water resources 

management, there remain many opportunities for further advancement. 

The case studies for Sydney and Canberra mainly focused on decisions 

associated with the headworks systems. However, there are considerable and 

practically important opportunities to extend the scope of these studies to include a 

much richer decision space. For example, the characterization of the drought 

contingency plan could be extended considerably. The case studies in this thesis 

limited rationing to domestic water use, when, in fact, there could be many more 

stages in a drought contingency plan that would impose severer rationing on all water 

sectors. It was shown that the total present worth cost for Sydney was sensitive to the 

choice of drought return period. Likewise it is expected there is similar sensitivity to 
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the way the drought contingency plan is managed in a severe drought. Another 

opportunity lies in linking headworks or centralized solutions with decentralized 

solutions (Chiou et al., 2007; Daigger and Crawford, 2007; Daigger, 2009) that 

harvest water at the local urban scale. In the Canberra case study rainwater tanks were 

included as one of the infrastructure options. However, the scope of decentralized 

options is far greater including local stormwater harvesting and non-potable water 

substitution using grey and blackwater sources. Apart from the policy relevance of 

including decentralized options in Australian urban water supply, there are 

considerable technical challenges dealing with sensible treatments of scale over time 

and space. 

The Fourth Assessment Report of the Intergovernmental Panel for Climate 

Change indicates that climate change is likely to impact on water resources around 

the world (Rosenzweig et al., 2007). In urban areas that are already vulnerable to 

drought, a drying climate is likely to significantly compound the stress arising from 

population growth (O’Hara and Georgakakos, 2008). Although the multi-objective 

scheduling approach developed in Chapter 4 was motivated by the need to cater for 

population growth, it is intrinsically suited to exploring the added stress of potentially 

drying climates. Because the approach allows scheduling of decisions over time, it 

provides a capable tool to explore adaptive management strategies provided, of 

course, a sufficiently rich decision space is used. However, the challenges, both 

technical and computational, would be considerable. 

Ensuring practicable computational turnaround times for multi-objective 

optimization applications in urban water resources remains a formidable challenge. 

Generally there are three strategies to deal with computationally-intensive 

optimization problems: 1) use parallel computing; 2) adopt more efficient 

optimization methods; 3) and use meta-models to approximate the mapping between 

the decision and objective function spaces. The third option was not explored in this 

thesis but has received considerable attention in recent years. There is a strong case 

for exploring this option in the context of urban water resources. 

The opportunity to develop new multi-objective ACO algorithms was limited by 

time constraints. There is clear scope to parallelize the ACO algorithms along the 

lines reported by Stützle (1998), Manfrin et al. (2006), Koshimizu and Saito (2009) 
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and Chen et al. (2012). There is considerable scope to exploit the use of tabu lists to 

prevent ants exploring infeasible solution spaces. There is scope to better tune ACO 

parameters. A number of studies have investigated the issue of tuning and the 

adoption of adaptive tuning methods (Arabshahi et al., 1996; Zecchin et al., 2005; 

Stützle et al., 2010; Randall, 2004; Pellegrini et al., 2012). Finally, there is scope to 

improve the performance of the EMOACO and EMOACO-I algorithms with respect 

to the Iε+ measure by dealing with the clustering behaviour of ants as they sample   

non-dominated routes. 

In conclusion, while there is considerable scope for further work, this thesis has 

made several original and significant contributions to produce multi-objective 

optimization methods of greater practical relevance to urban water resource 

management. 
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